References

  1. H. Jahrami, A.S. BaHammam, N.L. Bragazzi, Z. Saif, M. Faris, M.V. Vitiello, Sleep problems during the COVID-19 pandemic by population: a systematic review and meta-analysis, J. Clin. Sleep Med., 17 (2021) 299–313.
  2. F. Sevilla-Castillo, O.J. Roque-Reyes, F. Romero-Lechuga, M.F. Gómez-Núñez, M. Castillo-López, D. Medina-Santos, P.O. Román, J.R. Flores-Hernández, J.D. Méndez-Coca, D. Montaño-Olmos, K.C. Farfán-Lazos, M. Tobón-Cubillos, A. Viveros-Hernández, L. Torres-Ortega, K.Y. Hernández- Skewes, G. Montiel-Bravo, S. Ortega-Rodríguez, A.N. Peón, Both chloroquine and lopinavir/ritonavir are ineffective for COVID-19 Treatment and combined worsen the pathology: a single-center experience with severely ill patients, BioMed Res. Int., 2021 (2021) 8821318, doi: 10.1155/2021/8821318.
  3. C.D. Metcalfe, A.C. Alder, B. Halling-Sørensen, K. Krogh, K. Fenner, M. Larsbo, J.O. Straub, T.A. Ternes, E. Topp, D.R. Lapen, A.B.A. Boxall, Exposure Assessment Methods for Veterinary and Human-Use Medicines in the Environment: PEC vs. MEC Comparisons, K. Kümmerer, Eds., Pharmaceuticals in the Environment, Springer, Berlin, Heidelberg, 2008, pp. 147–171, doi: 10.1007/978-3-540-74664-5_11.
  4. J. Qu, Research progress of novel adsorption processes in water purification: a review, J. Environ. Sci., 20 (2008) 1–13.
  5. M. Grassi, G. Kaykioglu, V. Belgiorno, G. Lofrano, Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process, G. Lofrano, Ed., Emerging Compounds Removal from Wastewater, SpringerBriefs in Molecular Science, Springer, 2012, pp. 15–37, doi: 10.1007/978-94-007-3916-1_2.
  6. I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  7. Y. Liu, X. Zhang, J. Wang, A critical review of various adsorbents for selective removal of nitrate from water: structure, performance and mechanism, Chemosphere, 291 (2022) 132728, doi: 10.1016/j.chemosphere.2021.132728.
  8. J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong, M. Wang, Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARSCoV-2 infection in vitro, Cell Discovery, 6 (2020), doi: 10.1038/ s41421-020-0156-0.
  9. K.S.W. Sing, Adsorption methods for the characterization of porous materials, Adv. Colloid Interface Sci., 76–77 (1998) 3–11.
  10. J.D. Clogston, A.K. Patri, Zeta Potential Measurements, Methods Mol. Biol., 2011, doi: 10.1007/978-1-60327-198-1_6.
  11. S. Eris, S. Azizian, Extension of classical adsorption rate equations using mass of adsorbent: a graphical analysis, Sep. Purif. Technol., 179 (2017) 304–308.
  12. A. Farooq, L. Reinert, J.M. Levêque, N. Papaiconomou, N. Irfan, L. Duclaux, Adsorption of ionic liquids onto activated carbons: effect of pH and temperature, Microporous Mesoporous Mater., 158 (2012) 55–63.
  13. W. Plazinski, J. Dziuba, W. Rudzinski, Modeling of sorption kinetics: the pseudo-second-order equation and the sorbate intraparticle diffusivity, Adsorption, 19 (2013) 1055–1064.
  14. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard. Mater., 390 (2020) 122156, doi: 10.1016/j.jhazmat.2020.122156.
  15. X. Guo, J. Wang, A general kinetic model for adsorption: theoretical analysis and modeling, J. Mol. Liq., 288 (2019) 111100, doi: 10.1016/j.molliq.2019.111100.
  16. J. Wang, X. Guo, Adsorption isotherm models: classification, physical meaning, application and solving method, Chemosphere, 258 (2020) 127279, doi: 10.1016/j.chemosphere.2020.127279.
  17. É.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and Equilibrium Models of Adsorption, C. Bergmann, F. Machado, Eds., Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Carbon Nanostructures, Springer, Cham, 2015, pp. 33–69, doi: 10.1007/978-3-319-18875-1.