References
- J. Schmitz, M. Hahn, C.A. Brühl, Agrochemicals in field margins
– an experimental field study to assess the impacts of pesticides
and fertilizers on a natural plant community, Agric. Ecosyst.
Environ., 193 (2014) 60–69.
- I.M. Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai,
M. Megharaj, Pesticides in the urban environment: a potential
threat that knocks at the door, Sci. Total Environ., 711 (2020)
134612, doi: 10.1016/j.scitotenv.2019.134612.
- B. He, X. Wang, C. Yang, J. Zhu, Y. Jin, Z. Fu, The regulation
of autophagy in the pesticide-induced toxicity: angel or
demon?, Chemosphere, 242 (2020) 125138, doi: 10.1016/j. chemosphere.2019.125138.
- R.M. de Souza, D. Seibert, H.B. Quesada, F. de Jesus Bassetti,
M.R. Fagundes-Klen, R. Bergamasco, Occurrence, impacts and
general aspects of pesticides in surface water: a review, Process
Saf. Environ. Prot., 135 (2020) 22–37.
- C.L. Bahena, S.S. Martínez, D.M. Guzmán, M.T. Hernández,
Sonophotocatalytic degradation of alazine and gesaprim
commercial herbicides in TiO2 slurry, Chemosphere, 71 (2008)
982–989.
- M. Jiménez, I. Oller, M.I. Maldonado, S. Malato, A. Hernández-Ramírez, A. Zapata, J.M. Peralta-Hernández, Solar photo-Fenton degradation of herbicides partially dissolved in water,
Catal. Today, 161 (2011) 214–220.
- B.R. Garza-Campos, J.L. Guzmán-Mar, L.H. Reyes, E. Brillas,
A. Hernández-Ramírez, E.J. Ruiz-Ruiz, Coupling of solar
photoelectro-Fenton with a BDD anode and solar heterogeneous
photocatalysis for the mineralization of the herbicide atrazine,
Chemosphere, 97 (2014) 26–33.
- T. Yu, L. Wang, F. Ma, J. Yang, S. Bai, J. You, Self-immobilized
biomixture with pellets of Aspergillus niger Y3 and Arthrobacter.
sp ZXY-2 to remove atrazine in water: a bio-functions integration
system, Sci. Total Environ., 689 (2019) 875–882.
- W. Ajbar, A. Parrales, U. Cruz-Jacobo, R.A. Conde-Gutiérrez,
A. Bassam, O.A. Jaramillo, J.A. Hernández, The multivariable
inverse artificial neural network combined with GA and
PSO to improve the performance of solar parabolic trough
collector, Appl. Therm. Eng., 189 (2021) 116651, doi: 10.1016/j.applthermaleng.2021.116651.
- J. Jawad, A.H. Hawari, S. Zaidi, Modeling of forward osmosis
process using artificial neural networks (ANN) to predict the
permeate flux, Desalination, 484 (2020) 114427, doi: 10.1016/j.desal.2020.114427.
- M. Faegh, P. Behnam, M.B. Shafii, M. Khiadani, Development of
artificial neural networks for performance prediction of a heat
pump assisted humidification-dehumidification desalination
system, Desalination, 508 (2021) 115052, doi: 10.1016/j.desal.2021.115052.
- M. Meissner, M. Schmuker, G. Schneider, Optimized
particle swarm optimization (OPSO) and its application to
artificial neural network training, BMC Bioinf., 7 (2006) 125,
doi: 10.1186/1471-2105-7-125.
- M. Yucesan, E. Pekel, E. Celik, M. Gul, F. Serin, Forecasting
daily natural gas consumption with regression, time series
and machine learning based methods, Energy Sources, Part A,
(2021) 1–16, doi: 10.1080/15567036.2021.1875082.
- G. Zhiqiang, W. Huaiqing, L. Quan, Financial time series
forecasting using LPP and SVM optimized by PSO,
Soft Comput., 17 (2013) 805–818.
- S. He, W. Chen, X. Mu, W. Cui, Constrained optimization model
of the volume of initial rainwater storage tank based on ANN
and PSO, Environ. Sci. Pollut. Res. Int., 17 (2020) 21057–21070.
- R. Mahadeva, G. Manik, O.P. Verma, A. Goel, S. Kumar, In:
M. Pant, T.K. Sharma, O.P. Verma, R. Singla, A. Sikander,
Advances in Intelligent Systems and Computing, Springer
Singapore, Singapore, 2018, pp. 1209–1220.
- R. Mahadeva, M. Kumar, S.P. Patole, G. Manik, Employing
artificial neural network for accurate modeling, simulation and
performance analysis of an RO-based desalination process,
Sustainable Comput. Inf. Syst., 35 (2022) 100735, doi: 10.1016/j.suscom.2022.100735.
- R. Mahadeva, M. Kumar, S.P. Patole, G. Manik, Desalination
plant performance prediction model using grey wolf optimizer
based ANN approach, IEEE Access, 10 (2022) 34550–34561.
- R. Mahadeva, M. Kumar, S.P. Patole, G. Manik, An optimized
PSO-ANN model for improved prediction of water treatment
desalination plant performance, Water Supply, 22 (2022)
2874–2882.
- K.N. Pai, T.T.T. Nguyen, V. Prasad, A. Rajendran, Experimental
validation of an adsorbent-agnostic artificial neural network
(ANN) framework for the design and optimization of cyclic
adsorption processes, Sep. Purif. Technol., 290 (2022) 120783,
doi: 10.1016/j.seppur.2022.120783.
- Y. Zhang, H. Zhang, W. Zheng, S. You, Y. Wang, Optimal
operating conditions of a hybrid humidificationdehumidification
and heat pump desalination system with
multi-objective particle swarm algorithm, Desalination,
468 (2019) 114076, doi: 10.1016/j.desal.2019.114076.
- R. Mahadeva, M. Kumar, G. Manik, S.P. Patole, Modeling,
simulation, and optimization of the membrane performance
of seawater reverse osmosis desalination plant using neural
network and fuzzy based soft computing techniques,
Desal. Water Treat., 229 (2021) 17–30.
- A.G. Trovó, O.G. Junior, A.E.H. Machado, W.B. Neto, J.O. Silva,
Degradation of the herbicide paraquat by photo-Fenton process:
optimization by experimental design and toxicity assessment,
J. Braz. Chem. Soc., 24 (2013) 76–84.
- H. Zazou, N. Oturan, H. Zhang, M. Hamdani, M.A. Oturan,
Comparative study of electrochemical oxidation of herbicide
2,4,5-T: kinetics, parametric optimization and mineralization
pathway, Sustainable Environ. Res., 27 (2017) 15–23.
- A. Dargahi, A. Ansari, D. Nematollahi, G. Asgari,
R. Shokoohi, M.R. Samarghandi, Parameter optimization
and degradation mechanism for electrocatalytic degradation
of 2,4-diclorophenoxyacetic acid (2,4-D) herbicide by lead
dioxide electrodes, RSC Adv., 9 (2019) 5064–5075.
- Y. El. Hamzaoui, J.A. Hernández, S. Silva-Martínez, A. Bassam,
A. Álvarez, C. Lizama-Bahena, Optimal performance of COD
removal during aqueous treatment of alazine and gesaprim
commercial herbicides by direct and inverse neural network,
Desalination, 277 (2011) 325–337.
- Hach Company, Water Analysis Handbook, Loveland,
Colorado, USA, 1992.
- A. Nasrullah, A.H. Bhat, M.H. Isa, M. Danish, A. Naeem,
N. Muhammad, T. Khan, Efficient removal of methylene blue
dye using mangosteen peel waste: kinetics, isotherms and
artificial neural network (ANN) modeling, Desal. Water Treat.,
86 (2017) 191–202.
- I.G. Ezemagu, M.I. Ejimofor, M.C. Menkiti, C.C. Nwobi-
Okoye, Modeling and optimization of turbidity removal from
produced water using response surface methodology and
artificial neural network, S. Afr. J. Chem. Eng., 35 (2021) 78–88.
- R. Mahadeva, G. Manik, A. Goel, N. Dhakal, A review of the
artificial neural network based modelling and simulation
approaches applied to optimize reverse osmosis desalination
techniques, Desal. Water Treat., 156 (2019) 245–256.
- D.J. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, Chapman & Hall/CRC, London, 2011.
- H. Izadkhah, Deep Learning in Bioinformatics Techniques and
Applications in Practice, Academic Press, 2022.
- Y.-S. Hong, H. Lee, M.-J. Tahk, Acceleration of the convergence
speed of evolutionary algorithms using multi-layer neural
networks, Eng. Opt., 35 (2003) 91–102.
- M. Uzair, N. Jamil, Effects of Hidden Layers on the Efficiency
of Neural networks, 2020 IEEE 23rd International Multitopic
Conference (INMIC), IEEE, Bahawalpur, Pakistan, 2020, pp. 1–6.
- R.A. Conde-Gutiérrez, U. Cruz-Jacobo, A. Huicochea,
S.R. Casolco, J.A. Hernández, Optimal multivariable conditions
in the operation of an absorption heat transformer with energy
recycling solved by the genetic algorithm in artificial neural
network inverse, Appl. Soft Comput., 72 (2018) 218–234.
- F. Marini, B. Walczak, Particle swarm optimization (PSO).
A tutorial, Chemom. Intell. Lab. Syst., 149 (2015) 153–165.
- A.M. Dugandžić, A.V. Tomašević, M.M. Radišić,
N.Ž. Šekuljica, D.Ž. Mijin, S.D. Petrović, Effect of inorganic
ions, photosensitisers and scavengers on the photocatalytic
degradation of nicosulfuron, J. Photochem. Photobiol., A,
336 (2017) 146–155.
- E. Piera, J.C. Calpe, E. Brillas, X. Domènech, J. Peral,
2,4-Dichlorophenoxyacetic acid degradation by catalyzed
ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 systems,
Appl. Catal., B, 27 (2000) 169–177.
- M. Abdennouri, A. Elhalil, M. Farnane, H. Tounsadi,
F.Z. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi,
M. Baâlala, M. Bensitel, Y. El hafiane, A. Smith, N. Barka,
Photocatalytic degradation of 2,4-D and 2,4-DP herbicides on
Pt/TiO2 nanoparticles, J. Saudi Chem. Soc., 19 (2015) 485–493.
- A. Verma, N.T. Prakash, A.P. Toor, Photocatalytic degradation
of herbicide isoproturon in TiO2 aqueous suspensions:
study of reaction intermediates and degradation pathways,
Environ. Prog. Sustainable Energy, 33 (2013) 402–409.
- L.C. Cabrera, S.S. Caldas, S. Rodrigues, A. Bianchini,
F.A. Duarte, E.G. Primel, Degradation of herbicide diuron
in water employing the Fe0/H2O2 system, J. Braz. Chem. Soc.,
21 (2010) 2347–2352.