References

  1. J. Schmitz, M. Hahn, C.A. Brühl, Agrochemicals in field margins – an experimental field study to assess the impacts of pesticides and fertilizers on a natural plant community, Agric. Ecosyst. Environ., 193 (2014) 60–69.
  2. I.M. Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, M. Megharaj, Pesticides in the urban environment: a potential threat that knocks at the door, Sci. Total Environ., 711 (2020) 134612, doi: 10.1016/j.scitotenv.2019.134612.
  3. B. He, X. Wang, C. Yang, J. Zhu, Y. Jin, Z. Fu, The regulation of autophagy in the pesticide-induced toxicity: angel or demon?, Chemosphere, 242 (2020) 125138, doi: 10.1016/j. chemosphere.2019.125138.
  4. R.M. de Souza, D. Seibert, H.B. Quesada, F. de Jesus Bassetti, M.R. Fagundes-Klen, R. Bergamasco, Occurrence, impacts and general aspects of pesticides in surface water: a review, Process Saf. Environ. Prot., 135 (2020) 22–37.
  5. C.L. Bahena, S.S. Martínez, D.M. Guzmán, M.T. Hernández, Sonophotocatalytic degradation of alazine and gesaprim commercial herbicides in TiO2 slurry, Chemosphere, 71 (2008) 982–989.
  6. M. Jiménez, I. Oller, M.I. Maldonado, S. Malato, A. Hernández-Ramírez, A. Zapata, J.M. Peralta-Hernández, Solar photo-Fenton degradation of herbicides partially dissolved in water, Catal. Today, 161 (2011) 214–220.
  7. B.R. Garza-Campos, J.L. Guzmán-Mar, L.H. Reyes, E. Brillas, A. Hernández-Ramírez, E.J. Ruiz-Ruiz, Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine, Chemosphere, 97 (2014) 26–33.
  8. T. Yu, L. Wang, F. Ma, J. Yang, S. Bai, J. You, Self-immobilized biomixture with pellets of Aspergillus niger Y3 and Arthrobacter. sp ZXY-2 to remove atrazine in water: a bio-functions integration system, Sci. Total Environ., 689 (2019) 875–882.
  9. W. Ajbar, A. Parrales, U. Cruz-Jacobo, R.A. Conde-Gutiérrez, A. Bassam, O.A. Jaramillo, J.A. Hernández, The multivariable inverse artificial neural network combined with GA and PSO to improve the performance of solar parabolic trough collector, Appl. Therm. Eng., 189 (2021) 116651, doi: 10.1016/j.applthermaleng.2021.116651.
  10. J. Jawad, A.H. Hawari, S. Zaidi, Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux, Desalination, 484 (2020) 114427, doi: 10.1016/j.desal.2020.114427.
  11. M. Faegh, P. Behnam, M.B. Shafii, M. Khiadani, Development of artificial neural networks for performance prediction of a heat pump assisted humidification-dehumidification desalination system, Desalination, 508 (2021) 115052, doi: 10.1016/j.desal.2021.115052.
  12. M. Meissner, M. Schmuker, G. Schneider, Optimized particle swarm optimization (OPSO) and its application to artificial neural network training, BMC Bioinf., 7 (2006) 125, doi: 10.1186/1471-2105-7-125.
  13. M. Yucesan, E. Pekel, E. Celik, M. Gul, F. Serin, Forecasting daily natural gas consumption with regression, time series and machine learning based methods, Energy Sources, Part A, (2021) 1–16, doi: 10.1080/15567036.2021.1875082.
  14. G. Zhiqiang, W. Huaiqing, L. Quan, Financial time series forecasting using LPP and SVM optimized by PSO, Soft Comput., 17 (2013) 805–818.
  15. S. He, W. Chen, X. Mu, W. Cui, Constrained optimization model of the volume of initial rainwater storage tank based on ANN and PSO, Environ. Sci. Pollut. Res. Int., 17 (2020) 21057–21070.
  16. R. Mahadeva, G. Manik, O.P. Verma, A. Goel, S. Kumar, In: M. Pant, T.K. Sharma, O.P. Verma, R. Singla, A. Sikander, Advances in Intelligent Systems and Computing, Springer Singapore, Singapore, 2018, pp. 1209–1220.
  17. R. Mahadeva, M. Kumar, S.P. Patole, G. Manik, Employing artificial neural network for accurate modeling, simulation and performance analysis of an RO-based desalination process, Sustainable Comput. Inf. Syst., 35 (2022) 100735, doi: 10.1016/j.suscom.2022.100735.
  18. R. Mahadeva, M. Kumar, S.P. Patole, G. Manik, Desalination plant performance prediction model using grey wolf optimizer based ANN approach, IEEE Access, 10 (2022) 34550–34561.
  19. R. Mahadeva, M. Kumar, S.P. Patole, G. Manik, An optimized PSO-ANN model for improved prediction of water treatment desalination plant performance, Water Supply, 22 (2022) 2874–2882.
  20. K.N. Pai, T.T.T. Nguyen, V. Prasad, A. Rajendran, Experimental validation of an adsorbent-agnostic artificial neural network (ANN) framework for the design and optimization of cyclic adsorption processes, Sep. Purif. Technol., 290 (2022) 120783, doi: 10.1016/j.seppur.2022.120783.
  21. Y. Zhang, H. Zhang, W. Zheng, S. You, Y. Wang, Optimal operating conditions of a hybrid humidificationdehumidification and heat pump desalination system with multi-objective particle swarm algorithm, Desalination, 468 (2019) 114076, doi: 10.1016/j.desal.2019.114076.
  22. R. Mahadeva, M. Kumar, G. Manik, S.P. Patole, Modeling, simulation, and optimization of the membrane performance of seawater reverse osmosis desalination plant using neural network and fuzzy based soft computing techniques, Desal. Water Treat., 229 (2021) 17–30.
  23. A.G. Trovó, O.G. Junior, A.E.H. Machado, W.B. Neto, J.O. Silva, Degradation of the herbicide paraquat by photo-Fenton process: optimization by experimental design and toxicity assessment, J. Braz. Chem. Soc., 24 (2013) 76–84.
  24. H. Zazou, N. Oturan, H. Zhang, M. Hamdani, M.A. Oturan, Comparative study of electrochemical oxidation of herbicide 2,4,5-T: kinetics, parametric optimization and mineralization pathway, Sustainable Environ. Res., 27 (2017) 15–23.
  25. A. Dargahi, A. Ansari, D. Nematollahi, G. Asgari, R. Shokoohi, M.R. Samarghandi, Parameter optimization and degradation mechanism for electrocatalytic degradation of 2,4-diclorophenoxyacetic acid (2,4-D) herbicide by lead dioxide electrodes, RSC Adv., 9 (2019) 5064–5075.
  26. Y. El. Hamzaoui, J.A. Hernández, S. Silva-Martínez, A. Bassam, A. Álvarez, C. Lizama-Bahena, Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network, Desalination, 277 (2011) 325–337.
  27. Hach Company, Water Analysis Handbook, Loveland, Colorado, USA, 1992.
  28. A. Nasrullah, A.H. Bhat, M.H. Isa, M. Danish, A. Naeem, N. Muhammad, T. Khan, Efficient removal of methylene blue dye using mangosteen peel waste: kinetics, isotherms and artificial neural network (ANN) modeling, Desal. Water Treat., 86 (2017) 191–202.
  29. I.G. Ezemagu, M.I. Ejimofor, M.C. Menkiti, C.C. Nwobi- Okoye, Modeling and optimization of turbidity removal from produced water using response surface methodology and artificial neural network, S. Afr. J. Chem. Eng., 35 (2021) 78–88.
  30. R. Mahadeva, G. Manik, A. Goel, N. Dhakal, A review of the artificial neural network based modelling and simulation approaches applied to optimize reverse osmosis desalination techniques, Desal. Water Treat., 156 (2019) 245–256.
  31. D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC, London, 2011.
  32. H. Izadkhah, Deep Learning in Bioinformatics Techniques and Applications in Practice, Academic Press, 2022.
  33. Y.-S. Hong, H. Lee, M.-J. Tahk, Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks, Eng. Opt., 35 (2003) 91–102.
  34. M. Uzair, N. Jamil, Effects of Hidden Layers on the Efficiency of Neural networks, 2020 IEEE 23rd International Multitopic Conference (INMIC), IEEE, Bahawalpur, Pakistan, 2020, pp. 1–6.
  35. R.A. Conde-Gutiérrez, U. Cruz-Jacobo, A. Huicochea, S.R. Casolco, J.A. Hernández, Optimal multivariable conditions in the operation of an absorption heat transformer with energy recycling solved by the genetic algorithm in artificial neural network inverse, Appl. Soft Comput., 72 (2018) 218–234.
  36. F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial, Chemom. Intell. Lab. Syst., 149 (2015) 153–165.
  37. A.M. Dugandžić, A.V. Tomašević, M.M. Radišić, N.Ž. Šekuljica, D.Ž. Mijin, S.D. Petrović, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. Photochem. Photobiol., A, 336 (2017) 146–155.
  38. E. Piera, J.C. Calpe, E. Brillas, X. Domènech, J. Peral, 2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 systems, Appl. Catal., B, 27 (2000) 169–177.
  39. M. Abdennouri, A. Elhalil, M. Farnane, H. Tounsadi, F.Z. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi, M. Baâlala, M. Bensitel, Y. El hafiane, A. Smith, N. Barka, Photocatalytic degradation of 2,4-D and 2,4-DP herbicides on Pt/TiO2 nanoparticles, J. Saudi Chem. Soc., 19 (2015) 485–493.
  40. A. Verma, N.T. Prakash, A.P. Toor, Photocatalytic degradation of herbicide isoproturon in TiO2 aqueous suspensions: study of reaction intermediates and degradation pathways, Environ. Prog. Sustainable Energy, 33 (2013) 402–409.
  41. L.C. Cabrera, S.S. Caldas, S. Rodrigues, A. Bianchini, F.A. Duarte, E.G. Primel, Degradation of herbicide diuron in water employing the Fe0/H2O2 system, J. Braz. Chem. Soc., 21 (2010) 2347–2352.