References

  1. V. Rey, C.A. Ríos, L.Y. Vargas, T.M. Valente, Use of natural zeolite-rich tuff and siliceous sand for mine water treatment from abandoned gold mine tailings, J. Geochem. Explor., 220 (2021) 106660, doi: 10.1016/j.gexplo.2020.106660.
  2. A.S. Worlanyo, L. Jiangfeng, Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: a review, J. Environ. Manage., 279 (2021) 111623, doi: 10.1016/j.jenvman.2020.111623.
  3. N.R. Haddaway, S.J. Cooke, P. Lesser, B. Macura, A.E. Nilsson, J.J. Taylor, K. Raito, Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social–ecological systems in arctic and boreal regions: a systematic map protocol, Environ. Evidence, 8 (2019) 9, doi: 10.1186/s13750-019-0152-8.
  4. K. Nakazawa, O. Nagafuchi, T. Kawakami, T. Inoue, K. Yokota, Y. Serikawa, B. Cyio, R. Elvince, Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia, Ecotoxicol. Environ. Saf., 124 (2016) 155–162.
  5. Y. Trach, V. Melnychuk, G. Melnychuk, Ł. Mazur, A. Podlasek, M.D. Vaverková, E. Koda, Using local mineral materials for the rehabilitation of the Ustya River – a case study, Desal. Water Treat., 232 (2021) 346–356.
  6. A.L. Ciosek, G.K. Luk, Kinetic modelling of the removal of multiple heavy metallic ions from mine waste by natural zeolite sorption, Water, 9 (2017) 482, doi: 10.3390/w9070482.
  7. Z. Wang, Y. Xu, Z. Zhang, Y. Zhang, Review: acid mine drainage (AMD) in abandoned coal mines of Shanxi, China, Water, 13 (2021) 1, doi: 10.3390/w13010008.
  8. B. Aryee, B.K. Ntibery, E. Atorkui, Trends in the small-scale mining of precious minerals in Ghana: a perspective on its environmental impact, J. Cleaner Prod., 11 (2003) 131–140.
  9. J. Likus-Cieślik, M. Pietrzykowski, M. Szostak, M. Szulczewski, Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland), Environ. Monit. Assess., 189 (2017) 87, doi: 10.1007/s10661-017-5803-z.
  10. K.G. Bhattacharyya, S.S. Gupta, Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays, Colloids Surf., A, 277 (2006) 191–200.
  11. K. Cheyns, C.B.L. Nkulu, L.K. Ngombe, J.N. Asosa, V. Haufroid, T. De Putter, T. Nawrot, C.M. Kimpanga, O.L. Numbi, B.K. Ilunga, B. Nemery, E. Smolders, Pathways of human exposure to cobalt in Katanga, a mining area of the D.R. Congo, Sci. Total Environ., 490 (2014) 313–321.
  12. I. Moodley, C.M. Sheridan, U. Kappelmeyer, A. Akcil, Environmentally sustainable acid mine drainage remediation: research developments with a focus on waste/by-products, Miner. Eng., 126 (2018) 207–220.
  13. S. Milićević, M. Vlahović, M. Kragović, S. Martinović, V. Milošević, I. Jovanović, M. Stojmenović, Removal of copper from mining wastewater using natural raw material — comparative study between the synthetic and natural wastewater samples, Minerals, 10 (2020) 753, doi: 10.3390/min10090753.
  14. M. Esaifan, L.N. Warr, G. Grathoff, T. Meyer, M.-T. Schafmeister, A. Kruth, H. Testrich, Synthesis of
    hydroxy-sodalite/cancrinite zeolites from calcite-bearing kaolin for the removal of heavy metal ions in aqueous media, Minerals, 9 (2019) 484, doi: 10.3390/min9080484.
  15. S. Shirin, A. Jamal, C. Emmanouil, A.K. Yadav, Assessment of characteristics of acid mine drainage treated with fly ash, Appl. Sci., 11 (2021) 3910, doi: 10.3390/app11093910.
  16. M. Zolfaghari, S. Magdouli, R. Tanabene, S.P. Komtchou, R. Martial, T. Saffar, Pragmatic strategy for the removal of ammonia from gold mine effluents using a combination of electro-coagulation and zeolite cation exchange processes: a staged approach, J. Water Process Eng., 37 (2020) 101512, doi: 10.1016/j.jwpe.2020.101512.
  17. Y. Trach, M. Tytkowska-Owerko, L. Reczek, M. Michel, Comparison the adsorption capacity of Ukrainian tuff and basalt with zeolite–manganese removal from water solution, J. Ecol. Eng., 22 (2021) 161–168.
  18. L. Reczek, M.M. Michel, Y. Trach, T. Siwiec, M. Tytkowska- Owerko, The kinetics of manganese sorption on Ukrainian tuff and basalt—order and diffusion models analysis, Minerals, 10 (2020) 1065, doi: 10.3390/min10121065.
  19. Y. Trach, R. Trach, M. Kalenik, E. Koda, A. Podlasek, A study of dispersed, thermally activated limestone from Ukraine for the safe liming of water using ANN models, Energies, 14 (2021) 8377, doi: 10.3390/en14248377.
  20. Y. Trach, V. Melnychuk, M.M. Michel, L. Reczek, T. Siwiec, R. Trach, The characterization of Ukrainian volcanic tuffs from the Khmelnytsky region with the theoretical analysis of their application in construction and environmental technologies, Materials, 14 (2021) 7723, doi: 10.3390/ma14247723.
  21. M. Wdowin, Surowiec kaolinowy jako potencjalny materiał do syntezy zeolitu typu A, Gospod. Surowcami Miner., 31 (2015) 45–58.
  22. T.A. Aragaw, A.A. Ayalew, Removal of water hardness using zeolite synthesized from Ethiopian kaolin by hydrothermal method, Water Pract. Technol., 14 (2019) 145–159.
  23. M.J. Wilson, L. Wilson, M.V. Shaldybin, Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. II. Implications of predominantly illitic clays on the physico-chemical properties of shales, Earth Sci. Rev., 158 (2016) 1–8.
  24. S. Namba, N. Hosonuma, T. Yashima, Catalytic application of hydrophobic properties of high-silica zeolites: I. Hydrolysis of ethyl acetate in aqueous solution, J. Catal., 72 (1981) 16–20.
  25. H. Zhang, F. Xu, J. Xue, S. Chen, J. Wang, Y. Yang, Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism, Sci. Rep., 10 (2020) 6067, doi: 10.1038/s41598-020-63000-z.
  26. K.G. Bhattacharyya, S.S. Gupta, Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) ions from water onto kaolinite: influence of acid activation, Adsorpt. Sci. Technol., 27 (2009) 47–68.
  27. K.G. Bhattacharyya, S.S. Gupta, Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution, Sep. Purif. Technol., 50 (2006) 388–397.
  28. S.S. Gupta, K.G. Bhattacharyya, Adsorption of Ni(II) on clays, J. Colloid Interface Sci., 295 (2006) 21–32.
  29. M. Ajmal, R.A.K. Rao, R. Ahmad, J. Ahmad, Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater, J. Hazard. Mater., 79 (2000) 117–131.
  30. S.O. Dovgyy, M.M. Korzhnev, O.M. Trofymchuk, V.V. Ivanchenko, Geological Structure and Modern Geological-Economic and Ecological Conditions of Iron Ore Production and Processing, Kiev: Nika Center, 2017, p. 209.
  31. N. Sherstyuk, S. Serduk, Results of the study of heavy metals in water rivers Ingulets and Saksagan, Hydrol. Hydrochem. Hydroecol., 1 (2015) 101–110.
  32. G.І. Rudko, V.M. Ozerko, I.V. Shepel, Geology and Geological Economic Evaluation of Kaolin Deposits in Ukraine, Kyiv– Chernivtsi: Bukrek, Rudko, G.I., 2015, pp. 415.
  33. O. Geleta, A. Kichnyaev, V. Lyashok, Mineral resources of Ukraine: Part 2. Characteristics of clays, stocks and their using, 4 (2011) 2–17.
  34. E. Falkowska, T. Falkowski, Trace metals distribution pattern in floodplain sediments of a lowland river in relation to contemporary valley bottom morphodynamics: trace metals distribution in floodplain sediments, Earth Surf. Processes Landforms, 40 (2015) 876–887.
  35. S. Lazarević, I. Janković-Častvan, D. Jovanović, S. Milonjić, D. Janaćković, R. Petrović, Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites, Appl. Clay Sci., 37 (2007) 47–57.
  36. J. Bujdák, Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism, Appl. Clay Sci., 191 (2020) 105630, doi: 10.1016/j.clay.2020.105630.
  37. E. Wibowo, M. Rokhmat, Sutisna, Khairurrijal, M. Abdullah, Reduction of seawater salinity by natural zeolite (clinoptilolite): adsorption isotherms, thermodynamics and kinetics, Desalination, 409 (2017) 146–156.
  38. H. Cheng, Y. Zhou, Q. Liu, Chapter 6 – Kaolinite Nanomaterials: Preparation, Properties and Functional Applications, A. Wang, W. Wang, Eds., Nanomaterials from Clay Minerals, Elsevier, 2019, pp. 285–334.
  39. W. Hao, K. Mänd, Y. Li, D.S. Alessi, P. Somelar, M. Moussavou, A.E. Romashkin, A. Lepland, K. Kirsimäe, N.J. Planavsky, K.O. Konhauser, The kaolinite shuttle links the great oxidation and Lomagundi events, Nat. Commun., 12 (2021) 2944, doi: 10.1038/s41467-021-23304-8.
  40. S.C. Aboudi Mana, M.M. Hanafiah, A.J.K. Chowdhury, Environmental characteristics of clay and clay-based minerals, Geol. Ecol. Landscapes, 1 (2017) 155–161.
  41. Z. Li, R.S. Bowman, Retention of inorganic oxyanions by organo-kaolinite, Water Res., 35 (2001) 3771–3776.
  42. A.I. Vezentsev, D.M. Thuy, L.F. Goldovskaya-Peristaya, N.A. Glukhareva, Adsorption of methylene blue on the composite sorbent based on bentonite-like clay and hydroxyapatite, Indones. J. Chem., 18 (2018) 733, doi: 10.22146/ ijc.37050.
  43. S. Tahir, N. Rauf, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere, 63 (2006) 1842–1848.
  44. M. Tschapek, L. Tcheichvili, C. Wasowski, The point of zero charge (pzc) of kaolinite and SiO2+Al2O3 mixtures, Clay Miner., 10 (1974) 219–229.
  45. K. Kokini, J. DeJonge, S. Rangaraj, B. Beardsley, Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance, Surf. Coat. Technol., 154 (2002) 223–231.
  46. M.N. Islam, P. Paul, S. Hussain, D. Bhattacharjee, Layer-bylayer assembling and characterizations of
    dye-polyions onto solid substrate by electrostatic adsorption process, Int. J. Mod. Phys. B, 25 (2011) 1905–1914.
  47. X. Xu, L. Lin, C. Papelis, P. Xu, Sorption of arsenic from desalination concentrate onto drinking water treatment solids: operating conditions and kinetics, Water, 10 (2018) 96, doi: 10.3390/w10020096.
  48. M.R. Gelsthorpe, C.R. Theocharis, Modified aluminophosphate molecular sieves: preparation and characterisation, Catal. Today, 2 (1988) 613–620.
  49. C.R. Theocharis, K.J. s’Jacob, A.C. Gray, Enhancement of Lewis acidity in layer aluminosilicates. Treatment with acetic acid, J. Chem. Soc., Faraday Trans. 1 F, 84 (1988) 1509, doi: 10.1039/f19888401509.
  50. J. Ravichandran, B. Sivasankar, Properties and catalytic activity of acid-modified montmorillonite and vermiculite, Clays Clay Miner., 45 (1997) 854–858, doi: 10.1346/CCMN.1997.0450609.
  51. G. Suraj, C.S.P. Iyer, M. Lalithambika, Adsorption of cadmium and copper by modified kaolinites, Appl. Clay Sci., 13 (1998) 293–306.
  52. A. Aras, M. Albayrak, M. Arikan, K. Sobolev, Evaluation of selected kaolins as raw materials for the Turkish cement and concrete industry, Clay Miner., 42 (2007) 233–244.
  53. M.A. Caraballo, F. Macías, T.S. Rötting, J.M. Nieto, C. Ayora, Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin, Environ. Pollut., 159 (2011) 3613–3619.
  54. A.N. Shabalala, S.O. Ekolu, S. Diop, F. Solomon, Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study, J. Hazard. Mater., 323 (2017) 641–653.