References

  1. H. Cheng, T. Zhou, Q. Li, L. Lu, C. Lin, Anthropogenic chromium emissions in China from 1990 to 2009, PLoS One, 9 (2014) e87753, doi: 10.1371/journal.pone.0087753.
  2. J. Kotaś, Z. Stasicka, Chromium occurrence in the environment and methods of its speciation, Environ. Pollut., 107 (2000) 263–283.
  3. Asmatullah, S.N. Qureshi, A.R. Shakoori, Hexavalent chromium-induced congenital abnormalities in chick embryos, J. Appl. Toxicol., 18 (1998) 167–171.
  4. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Chromium, Nickel and Welding, Volume 49, IARC, Lyon, France, 1990.
  5. L.E. Eary, D. Rai, Chromate removal from aqueous wastes by reduction with ferrous ion, Environ. Sci. Technol., 22 (1988) 972–977.
  6. M. Faisal, S. Hasnain, Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth, Biotechnol. Lett., 27 (2005) 943–947.
  7. L.-Y. Chang, Alternative chromium reduction and heavy metal precipitation methods for industrial wastewater, Environ. Prog., 22 (2003) 174–182.
  8. S.-S. Chen, C.-Y. Cheng, C.-W. Li, P.-H. Chai, Y.-M. Chang, Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process, J. Hazard. Mater., 142 (2007) 362–367.
  9. M.C. Fournier-Salaün, C. Vauclair, Recovery of chromique ions from aqueous effluents by liquid membrane in continuous mode, Desalination, 144 (2002) 227–229.
  10. S. Nezar, Y. Cherifi, A. Barras, A. Addad, E. Dogheche, N. Saoula, N. Aϊcha Laoufi, P. Roussel, S. Szunerits, R. Boukherroub, Efficient reduction of Cr(VI) under visible light irradiation using CuS nanostructures, Arabian J. Chem., 12 (2019) 215–224.
  11. M. Cherifi, S. Hazourli, S. Pontvianne, J.-P. Leclerc, F. Lapicque, Electrokinetic removal of aluminum and chromium from industrial wastewater electrocoagulation treatment sludge, Desal. Water Treat., 57 (2016) 18500–18515.
  12. B. Mukhopadhyay, J. Sundquist, R.J. Schmitz, Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II), J. Environ. Manage., 82 (2007) 66–76.
  13. C.M. Stern, T.O. Jegede, V.A. Hulse, N. Elgrishi, Electrochemical reduction of Cr(VI) in water: lessons learned from fundamental studies and applications, Chem. Soc. Rev., 50 (2021) 1642–1667.
  14. V. Dimos, K.J. Haralambous, S. Malamis, A review on the recent studies for chromium species adsorption on raw and modified natural minerals, Crit. Rev. Env. Sci. Technol., 42 (2012) 1977–2016.
  15. M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: a review, Water Air Soil Pollut., 200 (2009) 59–77.
  16. M. Rafatullah, S. Othman, H. Rokiah, A. Anees, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  17. D. Mohan, C.U. Pittman Jr., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water, J. Hazard. Mater., 137 (2006) 762–811.
  18. X. Dong, L.Q. Ma, Y. Li, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing, J. Hazard. Mater., 190 (2011) 909–915.
  19. D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods—a review, Renewable Sustainable Energy Rev., 12 (2008) 116–140.
  20. L.Y. Deng, G.R. Xu, Z.C. Yan, Q.H. Liu, G.B. Li, Removal effect of Cr(VI) by adsorbent made from sewage sludge, Water Sci. Technol., 62 (2010) 2961–2969.
  21. Y. Li, X. Chen, L. Liu, P. Liu, Z. Zhou, Huhetaoli, Y. Wu, T. Lei, Characteristics and adsorption of Cr(VI) of biochar pyrolyzed from landfill leachate sludge, J. Anal. Appl. Pyrolysis, 162 (2022) 105449, doi: 10.1016/j.jaap.2022.105449.
  22. T. Chen, Z. Zhou, S. Xu, H. Wang, W. Lu, Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge, Bioresour. Technol., 190 (2015) 388–394.
  23. C. Tan, Z. Zeyu, X. Sai, W. Hongtao, L. Wenjing, Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge, Bioresour. Technol., 190 (2015) 388–394.
  24. F. Gorzin, M. Bahri Rasht Abadi, Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: kinetics and thermodynamics studies, Adsorpt. Sci. Technol., 36 (2018) 149–169.
  25. X. Qi, E. Zhou, X. Wu, S. Luo, Y. Song, Preparation of adsorbent by pyrolysis of sludge mixed with steel slag and study on adsorption of chromium ion in water, Front. Energy Res., (2022) 914, doi: 10.3389/fenrg.2021.771603.
  26. M. Schreier, T.E. Feltes, M.T. Schaal, J.R. Regalbuto, The determination of oxide surface charging parameters for a predictive metal adsorption model, J. Colloid Interface Sci., 348 (2010) 571–578.
  27. M. Kosmulski, The pH dependent surface charging and points of zero charge. VI. Update, J. Colloid Interface Sci., 426 (2014) 209–212.
  28. M. Benjelloun, Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq, S. Lairini, Recent advances in adsorption kinetic models: their application to dye types, Arabian J. Chem., 14 (2021) 103031, doi: 10.1016/j.arabjc.2021.103031.
  29. S. Afroze, T.K. Sen, H.M. Ang, Adsorption removal of zinc(II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: kinetics, mechanism and equilibrium study, Process Saf. Environ. Prot., 102 (2016) 336–352.
  30. H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Critical of linear and nonlinear equations of pseudo-first-order and pseudo-second-order kinetic models, Karbala Int. J. Mod. Sci., 4 (2018) 244–254.
  31. M.A. Salam, R.M. El-Shishtawy, A.Y. Obaid, Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose Bengal from real and model solution, J. Ind. Eng. Chem., 20 (2014) 3559–3567.
  32. T.D. Çiftçi, E. Henden, Nickel/nickel boride nanoparticles coated resin: a novel adsorbent for arsenic(III) and arsenic(V) removal, Powder Technol., 269 (2015) 470–480.
  33. Y. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  34. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, Sanit. Eng. Resolut. Div., 89 (1963) 31–59.
  35. A.O. Babatunde, Y.Q. Zhao, Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge, J. Hazard. Mater., 184 (2010) 746–752.
  36. S. Bounit, M. El Meray, A. Chehbouni, Influence du traitement thermique sur quatre éléments métalliques (Cu, Cd, Pb et Zn) des boues résiduaires, Afr. Sci., 1 (2005) 69–80.
  37. J.A.G. Gomes, P. Daida, M. Kesmez, M. Weir, H. Moreno, J.R. Parga, G. Irwin, H.M. Whinney, T. Grady, E. Peterson, D.L. Cocke, Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products, J. Hazard. Mater., 139 (2007) 220–231.
  38. A.K. Golder, A.N. Samanta, S. Ray, Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation, Sep. Purif. Technol., 52 (2006) 102–109.
  39. Z. Ren, X. Xu, X. Wang, B. Gao, Q. Yue, W. Song, L. Zhang, H. Wang, FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(VI) removal by amine cross-linking biosorbent, J. Colloid Interface Sci., 468 (2016) 313–323.
  40. D. Özçimen, A. Ersoy-Meriçboyu, Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials, Renewable Energy, 35 (2010) 1319–1324.
  41. X.S. Wang, L.F. Chen, F.Y. Li, K.L. Chen, W.Y. Wan, Y.J. Tang, Removal of Cr(VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance, J. Hazard. Mater., 175 (2010) 816–822.
  42. B.D. Zdravkov, J.J. Čermák, M. Šefara, J. Janků, Pore classification in the characterization of porous materials: a perspective, Cent. Eur. J. Chem., 5 (2007) 385–395.
  43. Z.H. Hu, M.P. Srinivasan, Y.M. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon, 39 (2001) 877–886.
  44. X. Wang, N. Zhu, B. Yin, Preparation of sludge-based activated carbon and its application in dye wastewater treatment, J. Hazard. Mater., 153 (2008) 22–27.
  45. S. Payel, Md. A. Hashem, Md. A. Hasan, Recycling biochar derived from tannery liming sludge for chromium adsorption in static and dynamic conditions, Environ. Technol. Innovation, 42 (2021) 102010, doi: 10.1016/j.eti.2021.102010.
  46. S.H. Hu, S.C. Hu, Pyrolysis of paper sludge and utilization for ionic dye adsorption, BioResources, 8 (2013) 1028–1042
  47. J. Wu, H. Zhang, P.J. He, Q. Yao, L.-M. Shao, Cr(VI) removal from aqueous solution by dried activated sludge biomass, J. Hazard. Mater., 176 (2010) 697–703.
  48. A. Hadfi, S.B. Aazza, M. Belattar, S. Mohareb, A. Driouiche, Study of the physico-chemical quality of the water of irrigation in Biougra circle along with highlighting the effectiveness of an inhibitor of calcium carbonate precipitation, Mediterr. J. Chem., 7 (2018) 272, doi: 10.13171/mjc74181121-hadfi.
  49. M.M. Tang, R. Bacon, Carbonization of cellulose fibers—I. Low temperature pyrolysis, Carbon, 2 (1964) 211–220.
  50. A. Magdziarz, M. Wilk, Thermogravimetric study of biomass, sewage sludge and coal combustion, Energy Convers. Manage., 75 (2013) 425–430.
  51. V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview, Environ. Sci. Pollut. Res., 20 (2013) 2828–2843.
  52. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, Desalination, 280 (2011) 1–13.
  53. B. Kakavandi, R.R. Kalantary, M. Farzadkia, A.H. Mahvi, A. Esrafili, A. Azari, A.R. Yari, A.B. Javid, Enhanced chromium(VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles, J. Environ. Health Sci. Eng., 12 (2014) 115, doi: 10.1186/s40201-014-0115-5.
  54. N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste, J. Chem. Eng., 147 (2009) 87–96.
  55. Y.S. Ho, C.C. Chiang, Sorption studies of acid dye by mixed sorbents, Adsorption, 7 (2001) 139–147.
  56. S. Kara, C. Aydiner, E. Demirbas, M. Kobya, N. Dizge, Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash, Desalination, 212 (2007) 282–293.
  57. J.L. Arias, M.S. Fernandez, J.E. Dennis, A.I. Caplan, Collagens of the chicken eggshell membranes, Connect. Tissue Res., 26 (1991) 37–45.
  58. P. Regmi, J.L. Garcia Moscoso, S. Kumar, X. Cao, J. Mao, G. Schafran, Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process, J. Environ. Manage., 109 (2012) 61–69.
  59. I.M. Trifi, Étude de l’élimination du chrome VI par adsorption sur l’alumine activée par dialyse ionique croisée, Phd Thesis, Université Paris-Est, 2012.
  60. A. Attia, S. Khedr, S. Elkholy, Adsorption of chromium ion(VI) by acid activated carbon, Braz. J. Chem. Eng., 27 (2010) 183–193.
  61. M. Zhang, Z. Zhang, Y. Peng, L. Feng, X. Li, C. Zhao, K. Sarfaraz, Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range, Int. J. Biol. Macromol., 156 (2020) 289–301.
  62. J. Wu, H. Zhang, P.J. He, Q. Yao, L.M. Shao, Cr(VI) removal from aqueous solution by dried activated sludge biomass, J. Hazard. Mater., 176 (2010) 697–703.
  63. M. Nahid, M.H.I. Genawi, H.E. Muftah, E.A. Awad, Chromium removal from tannery wastewater by electrocoagulation: optimization and sludge characterization, Water, 12 (2020) 1374, doi: 10.3390/w12051374.
  64. Y. Li, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian, Adsorption behavior of phenol by reversible surfactantmodified montmorillonite: mechanism, thermodynamics, and regeneration, J. Chem. Eng., 334 (2018) 1214–1221.
  65. İ. Tosun, Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models, Int. J. Environ. Res. Public Health, 9 (2012) 970–984.
  66. K. Vijayaraghavan, T. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard. Mater., 133 (2006) 304–308.
  67. M.A.H. Dhaif-Allah, S.N. Taqui, U.T. Syed, A.A. Syed, Kinetic and isotherm modeling for acid blue 113 dye adsorption onto low-cost nutraceutical industrial fenugreek seed spent, Appl. Water Sci., 10 (2020) 58, doi: 10.1007/s13201-020-1141-3.
  68. M.R.R. Kooh, L.B.L. Lim, L.H. Lim, M.K. Dahri, Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method, Environ. Monit. Assess., 188 (2016) 108, doi: 10.1007/s10661-016-5108-7.
  69. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  70. S. Mullerova, E. Baldikova, J. Prochazkova, K. Pospiskova, I. Safarik, Magnetically modified macroalgae Cymopolia barbata biomass as an adsorbent for safranin O removal, Mater. Chem. Phys., 225 (2019) 174–180.
  71. S.R. Sumanjit, R.K. Mahajan, Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia, Arabian J. Chem., 9 (2016) S1464–S1477.
  72. M. Abbas, Removal of brilliant green (BG) by activated carbon derived from medlar nucleus (ACMN) – kinetic, isotherms and thermodynamic aspects of adsorption, Adsorpt. Sci. Technol., 38 (2020) 464–482.
  73. P. Jain, K. Sahoo, L. Mahiya, H. Ojha, H. Trivedi, A.S. Parmar, M. Kumar, Color removal from model dye effluent using PVA-GA hydrogel beads, J. Environ. Manage., 281 (2021) 111797, doi: 10.1016/j.jenvman.2020.111797.
  74. J.O. Ojediran, A.O. Dada, S.O. Aniyi, R.O. David, A.D. Adewumi, Mechanism and isotherm modeling of effective adsorption of malachite green as endocrine disruptive dye using acid functionalized maize cob (AFMC), Sci. Rep., 11 (2021), doi: 10.1038/s41598-021-00993-1.
  75. E.O. Oyelude, J.A.M. Awudza, S.K. Twumasi, Equilibrium, kinetic and thermodynamic study of removal of eosin yellow from aqueous solution using teak leaf litter powder, Sci Rep, 7 (2017) 12198,
    doi: 10.1038/s41598-017-12424-1.
  76. M.P. Tavlieva, S.D. Genieva, V.G. Georgieva, L.T. Vlaev, Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash, J. Colloid Interface Sci., 409 (2013) 112–122.
  77. I. Tsibranska, E. Hristova, Comparison of different kinetic models for adsorption of heavy metals onto activated carbon from apricot stones, Bulg. Chem. Commun., 43 (2011) 370–377.
  78. P. Senthil Kumar, C. Senthamarai, A. Durgadevi, Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of copper ions onto the surface modified agricultural waste, Environ. Prog. Sustainable Energy, 33 (2014) 28–37.
  79. Y.S. Shen, S.L. Wang, Y.M. Tzou, Y.Y. Yan, W.H. Kuan, Removal of hexavalent Cr by coconut coir and derived chars – the effect of surface functionality, BioTechnology, 104 (2012) 165–172.
  80. P.T. de Souza E Silva, N.T. de Mello, M.M.M. Duarte, M. Conceição, B.S.M. Montenegro, A.N. Araújo, B. de Barros Neto, V.L. da Silva, Extraction and recovery of chromium from electroplating sludge, J. Hazard. Mater., 128 (2006) 39–43.
  81. A. Chaudhary, B. Ganguli, S.M. Grimes, The use of chromium waste sludge for the adsorption of colour from dye effluent streams, J. Chem. Technol. Biotechnol., 77 (2002) 767–770.
  82. C.K. Lee, K.S. Low, S.W. Chow, Chrome sludge as an adsorbent for colour removal, Environ. Technol., 17 (1996) 1023–1028.
  83. L. Liu, X. Liu, D. Wang, H. Lin, L. Huang, Removal and reduction of Cr(VI) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge, J. Cleaner Prod., 257 (2020) 120562, doi: 10.1016/j.jclepro.2020.120562.
  84. J. Wang, R. Cao, D. He, A. Saleem, Facile preparation of polyethyleneimine modified activated sludge-based adsorbent for hexavalent chromium removal from aqueous solution, Sep. Sci. Technol., 56 (2021) 498–506.