References

  1. K. Pirzadeh, A.A. Ghoreyshi, Phenol removal from aqueous phase by adsorption on activated carbon prepared from paper mill sludge, Desal. Water Treat., 52 (2014) 6505–6518.
  2. K. Mainali, Phenolic compounds contaminants in water: a glance, Curr. Trends. Civ. Struct. Eng., 4 (2020) 1–3.
  3. S. Rahdar, M. Ahamadabadi, R. Khaksefidi, M. Saeidi, M.R. Narooie, A. Salimi, H. Biglari, M.M. Baneshi, Evaluation of phenol removal from aqueous solution by banana leaf ash, J. Global Pharm. Technol., 9 (2017) 20–28.
  4. S. Golbaz, A.J. Jafari, M. Rafiee, R.R. Kalantary, Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: mechanisms and theory, Chem. Eng. J., 253 Complete (2014) 251–257.
  5. L.H. Gracioso, P.B. Vieira, M.P.G. Baltazar, I.R. Avanzi, B. Karolski, C.A.O. Nascimento, E.A. Perpetuo, Removal of phenolic compounds from raw industrial wastewater by Achromobacter sp. isolated from a hydrocarbon-contaminated area, Water Environ. J., 33 (2018) 1–11.
  6. F. Zhang, K. Wu, H. Zhou, Y. Hu, P. Sergei, H. Wu, C. Wei, Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater, J. Environ. Manage., 224 (2018) 376–386.
  7. J. Fan, H. Wu, R. Liu, L. Meng, Y. Sun, Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts, Environ. Sci. Pollut. Res., 28 (2021) 2522–2548.
  8. G. Fadillah, T.A. Saleh, S. Wahyuningsih, Enhanced electrochemical degradation of 4-nitrophenol molecules using novel Ti/TiO2-NiO electrodes, J. Mol. Liq., 289 (2019) 1–20.
  9. M.A. Farajzadeh, M.R. Fallahi, Study of phenolic compounds removal from aqueous solution by polymeric sorbent, J. Chin. Chem. Soc., 52 (2005) 295–301.
  10. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  11. A. Ahmadi, R. Foroutan, H. Esmaeili, S.J. Peighambardoust, S. Hemmati, B. Ramavandi, Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for uptake of cationic dye molecules from water and wastewater, Mater. Chem. Phys., 284 (2022) 126088, doi: 10.1016/j.matchemphys.2022.126088.
  12. M. Dudziak, S. Werle, Studies on the adsorption of phenol on dried sewage sludge and solid gasification by-products, Desal. Water Treat., 57 (2014) 1067–1074.
  13. R. Foroutan, S.J. Peighambardoust, M. Amarzadeh, A.K. Korri, N.S. Peighambardoust, A. Ahmad, B. Ramavandi, Nickel ions abatement from aqueous solutions and shipbuilding industry wastewater using ZIF-8-chicken beak hydroxyapatite, J. Mol. Liq., 356 (2022) 119003, doi: 10.1016/j.molliq.2022.119003.
  14. T.A. Oyehan, F.A. Olabemiwo, B.S. Tawabini, T.A. Saleh, The capacity of mesoporous fly ash grafted with ultrathin film of polydiallyldimethyl ammonium for enhanced removal of phenol from aqueous solutions, J. Cleaner Prod., 263 (2020) 1–10.
  15. M.D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martínez Férez, Equilibrium studies on phenol removal from industrial wastewater through polymeric resins, Sep. Purif. Technol., 47 (2016) 253–258.
  16. T. Jamnongkan, N. Intaramongkol, N. Kanjanaphong, K. Ponjaroen, W. Sriwiset, R. Mongkholrattanasit, P. Wongwachirakorn, K.-Y.A. Lin, C.-F. Huang, Study of the enhancements of porous structures of activated carbons produced from durian husk wastes, Sustainability, 14 (2022) 5896, doi: 10.3390/su14105896.
  17. M. Doloksaribua, B. Prihandokob, K. Triyanac, Harsojod, Preparation and characterization of activated carbon based on coconut shell for supercapacitor, Int. J. Sci.: Basic Appl. Res., 35 (2017) 430–437.
  18. M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman, Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye, Surf. Interfaces, 11 (2018) 1–13.
  19. F.J. Tuli, A. Hossain, A.K.M. Fazle Kibria, A.R.M. Tareq, S.M.M.A. Mamun, A.K.M. Atique Ullah, Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: a study of adsorption isotherm and kinetics, Environ. Nanotechnol. Monit. Manage., 14 (2020) 1–8.
  20. P.T. Dhorabe, D.H. Lataye, R.S. Ingole, Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from acacia glauca sawdust, Water Sci. Technol., 73 (2015) 955–966.
  21. A. Kumar, H.M. Jena, Removal of methylene blue and phenol onto prepared activated carbon from fox nutshell by chemical activation in batch and fixed-bed column, J. Cleaner Prod., 137 (2016) 1246–1259.
  22. I. Langmuir, The Adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  23. C.R. Girish, Various isotherm models for multicomponent adsorption: a review, Int. J. Civ. Eng., 8 (2017) 80–86.
  24. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of rhodamine b dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  25. A.A. Ahmad, B.H. Hameed, N. Aziz, Adsorption of direct dye on palm ash: kinetic and equilibrium modeling, J. Hazard. Mater., 141 (2007) 70–76.
  26. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  27. J.O. Ojediran, A.O. Dada, S.O. Aniyi, R. David, A.D. Adewumi, Mechanism and isotherm modeling of effective adsorption of malachite green as endocrine disruptive dye using acid functionalized maize cob (AFMC), Sci. Rep., 11 (2021) 1–15.
  28. H. Asnaoui, Y. Dehmani, M. Khalis, E. Hachem, Adsorption of phenol from aqueous solutions by Na–bentonite: kinetic, equilibrium and thermodynamic studies, J. Environ. Anal. Chem., 102 (2022) 3043–3057.
  29. R.I. Yousef, B. El-Eswed, A.H. Al-Muhtaseb, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
  30. Y. Önal, C. Akmil-Başar, Ç. Sarıcı-Özdemir, S. Erdoğan, Textural development of sugar beet bagasse activated with ZnCl2, J. Hazard. Mater., 142 (2007) 138–143.
  31. A.J. Jafari, A. Alahabadi, M.H. Saghi, Z. Rezai, A. Rastegar, M.S. Zamani, P. Singh, A. Hosseini-Bandegharaei, Adsorptive removal of phenol from aqueous solutions using chemically activated rice husk ash: equilibrium, kinetic, and thermodynamic studies, Desal. Water. Treat., 158 (2019) 233–244.
  32. A. Melliti, V. Srivastava, J. Kheriji, M. Sillanpää, B. Hamrouni, Date palm fiber as a novel precursor for porous activated carbon: optimization, characterization and its application as tylosin antibiotic scavenger from aqueous solution, Surf. Interfaces, 24 (2021) 1–12.
  33. S. Raghavendra, G.N. Lokesh, Evaluation of mechanical properties in date palm fronds polymer composites, AIP Conf. Proc., 2057 (2019) 1–5.
  34. T.A. Saleh, A.M. Elsharif, S. Asiri, A.I. Mohammed, H. Dafalla, Synthesis of carbon nanotubes grafted with copolymer of acrylic acid and acrylamide for phenol removal, Environ. Nanotechnol. Monit. Manage., 14 (2020) 1–24.
  35. I. Derrouiche, I. Ben Marzoug, F. Sakli, S. Roudesli, Study of extraction and characterization of ultimate date palm fibers, Adv. Mater., 4 (2015) 7–14.
  36. O.S. Samuel, A.M, Adefusika, In: A.R. Pascual, M.E. Eugenio Martín, Cellulose, IntechOpen, 2019, pp. 1–16 (Online).
  37. J. Jain, S. Jain, S. Sinha, Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy, J. Elastomers. Plast., 51 (2018) 1–20.
  38. A.O. Basheer, M.M. Hanafiah, M. Abdulhakim Alsaadi, Y. Al-Douri, M.A. Malek, M. Mohammed Aljumaily, S. Saadi Fiyadh, Synthesis and characterization of natural extracted precursor date palm fibre-based activated carbon for aluminum removal by RSM optimization, Processes, 7(2019) 1–20.
  39. M.I. Nasir, M.Z. Hossain, P.A. Charpentier, Synthesis and characterization of date palm fiber-based bio-char and activated carbon and its utilization for environmental remediation, J. Pet. Res. Stud., 8 (2018) 209–222.
  40. A. Machrouhi, H. Alilou, M. Farnane, S. El Hamidi, M. Sadiq, M. Abdennouri, H. Tounsadi, N. Barka, Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design, J. Sci.: Adv. Mater. Devices, 4 (2019) 544–553.
  41. Z. Aksu, E. Kabasakal, Batch adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35 (2003) 223–240.
  42. M.A. Khan, A. Ahmad, Kinetics and thermodynamic studies of phenol adsorption on nanocomposite, Desal. Water Treat., 57 (2016) 11255–11265.
  43. A.M. Channa, S. Baytak, S.Q. Memon, M.Y. Talpur, Equilibrium, kinetic and thermodynamic studies of removal of phenol from aqueous solution using surface engineered chemistry, Heliyon, 5 (2019) 1–7.
  44. B. Xie, J. Qin, S. Wang, X. Li, H. Sun, W. Chen, Adsorption of phenol on commercial activated carbons: modelling and interpretation, Int. J Environ. Res. Public Health, 17 (2020) 1–13.
  45. J.Q. Lin, S.E. Yang, J.M. Duan, J.J. Wu, L.Y. Jin, J.M. Lin, Q.L. Deng, M. Jawaid, E.-R. Kenawy, The adsorption mechanism of modified activated carbon on phenol, MATEC Web Conf., 67 (2016) 1–12.
  46. H. Panda, N. Tiadi, M. Mohanty, C.R. Mohanty, Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution, S. Afr. J. Chem. Eng., 23 (2017) 132–138.
  47. M.T. Uddin, M.S. Islam, M.A. Islam, M.Z. Abedin, Uptake of phenol from aqueous solution by burned water hyacinth, Pol. J. Chem. Technol., 10 (2008) 43–49.
  48. R.S. Ingole, D.H. Lataye, P.T. Dhorabe, Adsorption of phenol onto banana peels activated carbon, KSCE J. Civ. Eng., 21 (2016) 100–110.
  49. A.S. Muhammad, M.A, Abdurrahman, Adsorption of methylene blue onto modified agricultural waste, Mor. J. Chem., 8 (2020) 412–427.
  50. R. Sharan, G. Singh, S.K. Gupta, Adsorption of phenol from aqueous solution onto fly ash from a thermal power plant, Adsorpt. Sci. Technol., 27 (2009) 267–279.
  51. O. Abdelwahab, N.K. Amin, Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: kinetics, isotherm and thermodynamic studies, Egypt. J. Aquat. Res., 39 (2013) 215–223.
  52. A.E. Ofomaja, Y.S. Ho, Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent, Dyes Pigm., 74 (2007) 60–66.
  53. S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Jr., Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng., 7 (2019) 1–40.
  54. N. Mojoudi, N. Mirghaffari, M. Soleimani, H. Shariatmadari, C. Belver, J. Bedia, Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies, Sci. Rep., 9 (2019) 1–12.
  55. R. Ragadhita, A.B.D. Nandiyanto, How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations, Indones. J. Sci. Technol., 6 (2021) 205–234.
  56. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  57. R. Foroutan, S.J. Peighambardoust, S. Hemmati, A. Ahmadi, E. Falletta, B. Ramavandi, C.L. Bianchi, Zn2+ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe3O4 magnetic composite under ultrasonic waves, RSC Adv., 11 (2021) 27309–27321.
  58. A. Adak, A. Pal, M. Bandyopadhyay, Removal of phenol from water environment by surfactant-modified alumina through adsolubilization, Colloids Surf., A, 277 (2006) 63–68.
  59. P. Strachowski, M. Bystrzejewski, Comparative studies of sorption of phenolic compounds onto
    carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon, Colloids Surf., A, 467 (2015) 113–123.
  60. Z. Gong, S. Li, W. Han, J. Wang, J. Ma, X. Zhang, Recyclable graphene oxide grafted with
    poly(N-isopropylacrylamide) and its enhanced selective adsorption for phenols, Appl. Surf. Sci., 362 (2016) 459–468.
  61. B. Abussaud, H.A. Asmaly, Ihsanullah, T.A. Saleh, V.K. Gupta, T. Laoui, M.A. Atieh, Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide, J. Mol. Liq., 213 (2015) 351–359.
  62. I. Vázquez, J. Rodríguez-Iglesias, E. Marañón, L. Castrillón, M. Álvarez, Removal of residual phenols from coke wastewater by adsorption, J. Hazard. Mater., 147 (2007) 395–400.
  63. V.T. Trinh, T.M.P. Nguyen, H.T. Van, L.P. Hoang, T.V. Nguyen, L.T. Ha, X.H. Vu, T.T. Pham, T.N. Nguyen, N.V. Quang, X.C. Nguyen, Phosphate adsorption by silver nanoparticlesloaded activated carbon derived from tea residue, Sci. Rep., 10 (2020) 1–13.
  64. G.W. Kajjumba, S. Emik, A. Öngen, H. Kurtulus Özcan, S. Aydın, In: S. Edebali, Advanced Sorption Process Applications, Selçuk University, Turkey, 2019, pp. 1–19.
  65. J.H. Samat, N.N.M. Shahri, M.A. Abdullah, N.A.A. Suhaimi, K.M. Padmosoedarso, E. Kusrini, A.H. Mahadi, J. Hobley, A. Usman, Adsorption of acid blue 25 on agricultural wastes: efficiency, kinetics, mechanism, and regeneration, Air Soil Water Res., 14 (2021) 1–12.
  66. M.A. Salam, R.M. El-Shishtawy, A.Y. Obaid, Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose Bengal from real and model solution, Ind. Eng. Chem., 20 (2014) 3559–3567.
  67. B.S. Chittoo, C. Sutherland, Adsorption using lime-iron sludge-encapsulated calcium alginate beads for phosphate recovery with ANN- and RSM-optimized encapsulation, J. Environ. Eng., 145 (2019) 1–18.
  68. Z. Shehu, W.L. Danbature, B. Magaji, Y.S. Yakubu, D. Balarak, Adsorption of phenol from wastewater using copper oxide supported on activated carbon obtained from coal: thermodynamics and kinetics studies, Chem. Sci. Eng. Res., 3 (2021) 16–23.
  69. P. Muthamilselvi, R. Karthikeyan, B.S.M. Kumar, Adsorption of phenol onto garlic peel: optimization, kinetics, isotherm, and thermodynamic studies, Desal. Water Treat., 57 (2016) 2089–2103.