References

  1. H.I. Abdel-Shafy, M.A. El-Khateeb, M. Regelsberger, R. El-Sheikh, M. Shehata, Integrated system for the treatment of blackwater and greywater via UASB and constructed wetland in Egypt, Desal. Water Treat., 8 (2009) 272–278.
  2. F. Tufaner, Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland, Environ. Technol., 41 (2018) 912–920.
  3. A. Sarti, M. Zaiat, Anaerobic treatment of sulfate-rich wastewater in an anaerobic sequential batch reactor (AnSBR) using butanol as the carbon source, J. Environ. Manage., 92 (2011) 1537–1541.
  4. R. Boopath, C.F. Kulpa, J. Manning, Anaerobic biodegradation of explosives and related compounds by
    sulfate-reducing and methanogenic bacteria: a review, Bioresour. Technol., 63 (1998) 81–89.
  5. S. He, W. Hu, Y. Liu, Y. Xie, H. Zhou, X. Wang, J. Chen, Y. Zhang, Mechanism of efficient remediation of U(VI) using biogenic CMC-FeS complex produced by sulfate-reducing bacteria, J. Hazard. Mater., 420 (2021) 126645, doi: 10.1016/j.jhazmat.2021.126645.
  6. X. Li, S.M. Lan, Z.P. Zhu, C. Zhang, G.M. Zeng, Y.G. Liu, W.C. Cao, B. Song, H. Yang, S.F. Wang, S.H. Wu, The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: a review, Ecotoxicol. Environ. Saf., 158 (2018) 162–170.
  7. O.L. Zacarías-Estrada, L. Ballinas-Casarrubias, M.L. Montero-Cabrera, R. Loredo-Portales, E. Orrantia-Borunda, A. Luna-Velasco, Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor, J. Hazard. Mater., 384 (2020) 121392, doi: 10.1016/j.jhazmat.2019.121392.
  8. J. Cao, G. Zhang, Z.S. Mao, Y. Li, Z. Fang, C. Yang, Influence of electron donors on the growth and activity of sulfate-reducing bacteria, Int. J. Miner. Process., 106–109 (2012) 58–64.
  9. E.W. Nogueira, L.A. Gouvêa de Godoi, L.N. Marques Yabuki, G. Brucha, M.H.R.Z. Damianovic, Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: performance and microbial community of the downflow structured-bed bioreactor, Bioresour. Technol., 330 (2021) 124968, doi: 10.1016/j.biortech.2021.124968.
  10. R. Singh, A. Kumar, A. Kirrolia, R. Kumar, N. Yadav, N.R. Bishnoi, R.K. Lohchab, Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study, Bioresour. Technol., 102 (2011) 677–682.
  11. J. Choi, F.K.F. Geronimo, M.C. Maniquiz-Redillas, M.J Kang, L.H. Kim, Evaluation of a hybrid constructed wetland system for treating urban storm water runoff, Desal. Water Treat., 53 (2015) 3104–3110.
  12. T.D. Březinová, J. Vymazal, Distribution of heavy metals in Phragmites australis growing in constructed treatment wetlands and comparison with natural unpolluted sites, Ecol. Eng., 175 (2022) 106505, doi: 10.1016/j.ecoleng.2021.106505.
  13. M.M. Nabuyanda, P. Kelderman, J.V. Bruggen, K. Irvine, Distribution of the heavy metals Co, Cu, and Pb in sediments and Typha spp. and Phragmites mauritianus in three Zambian wetlands, J. Environ. Manage., 304 (2022) 114133, doi: 10.1016/j.jenvman.2021.114133.
  14. A. Castillo, F. Cecchi, J. Mata-Alvarez, A combined anaerobicaerobic systems to treat domestic sewage in coastal areas, Water Res., 31 (1997) 3057–3063.
  15. M.L. Merino-Solís, E. Villegas, J. de Anda, A. López-López, The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: an anaerobic filter with a constructed wetland, Water, 7 (2015) 1149–1163.
  16. F. Duman, Z. Leblebic, A. Aksoy, Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. BR.) exposed to cadmium, cobalt and chromium, Chem. Speciation Bioavailability, 21 (2009) 257–265.
  17. C. Cordeiro, P.J.C. Favas, J. Pratas, S.K. Sarkar, P. Venkatachalam, Uranium accumulation in aquatic macrophytes in an uraniferous region: relevance to natural attenuation, Chemosphere, 156 (2016) 76–87.
  18. L. Lin, L. Luo, M. Lian, X. Zhang, D. Yang, Cadmium accumulation characteristics of emerged plant Nasturtium officinale R.BR, Resour. Environ. Yangtze Basin, 4 (2015) 50–60.
  19. K. Huang, L. Lin, F. Chen, M. Liao, J. Wang, Y. Tang, Y. Lai, D. Liang, H. Xia, X. Wang, C. Jing, Z. Ping, Q. Mahmood, Simultaneous sulfide and nitrate removal in anaerobic reactor under shock loading, Bioresour. Technol., 100 (2009) 3010–3014.
  20. K. Li, L. Lin, J. Wang, H. Xia, D. Liang, X. Wang, M. Liao, L. Wang, L. Liu, C. Chen, Y. Tang, Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale, Environ. Monit. Assess., 189 (2017) 374, doi: 10.1007/s10661-017-6106-0.
  21. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA, 2005.
  22. E. Sahinkaya, A. Yurtsever, Y. Toker, H. Elcik, M. Cakmaci, A.H. Kaksonen, Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor, Miner. Eng., 75 (2015) 133–139.
  23. G. Yu, G. Wang, T. Chi, C. Du, J. Wang, P. Li, Y. Zhang, S. Wang, K. Yang, Y. Long, H. Chen. Enhanced removal of heavy metals and metalloids by constructed wetlands: a review of approaches and mechanisms, Sci. Total Environ., 821 (2022) 153516, doi: 10.1016/j.scitotenv.2022.153516.
  24. L. Lefticariu, E.R. Walters, C.W. Pugh, K.S. Bender, Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: field experiments, J. Appl. Geochem., 63 (2015) 70–82.
  25. F. Bavandpour, Y.C. Zou, Y.H. He, T. Saeed, Y. Sun, G.Z. Sun, Removal of dissolved metals in wetland columns filled with shell grits and plant biomass, Chem. Eng. J., 331 (2018) 234–241.
  26. K. Lizama-Allende, J. Ayala, I. Jaque, P. Echeverría, The removal of arsenic and metals from highly acidic water in horizontal subsurface flow constructed wetlands with alternative supporting media, J. Hazard. Mater., 408 (2021) 124832, doi: 10.1016/j.jhazmat.2020.124832.
  27. R. Rabus, T.A. Hansen, F. Widdel, Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes, E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, F. Thompson, Eds., The Prokaryotes, Springer, Berlin, Heidelberg, 2013. doi:10.1007/978-3-64
  28. C. Guerrero-Barajas, A. Ordaz, C. Garibay-Orijel, S.M. García- Solares, F. Bastida-Gonzalez, P.B. Zarate-Segura, Enhanced sulfate reduction and trichloroethylene (TCE) biodegradation in a UASB reactor operated with a sludge developed from hydrothermal vents sediments: process and microbial ecology, Int. Biodeterior. Biodegrad., 94 (2014) 182–191.
  29. B. Brahmacharimayum, P.K. Ghosh, Sulfate bioreduction and elemental sulfur formation in a packed bed reactor, J. Environ. Chem. Eng., 2 (2014) 1287–1293.
  30. R.A. Khalid, W.H. Patrick Jr., R.P. Gambrell, Effect of dissolved oxygen on chemical transformations of heavy metals, phosphorus, and nitrogen in an estuarine sediment, Estuarine Coastal Shelf Sci., 6 (1978) 21–35.
  31. A. Pedescoll, R. Sidrach-Cardona, M. Hijosa-Valsero, E. Becares, Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment, Ecol. Eng., 80 (2015) 92–99.
  32. C.J. Gandy, J.E. Davis, P.H.A. Orme, H.A. Potter, A.P. Jarvis, Metal removal mechanisms in a short hydraulic residence time subsurface flow compost wetland for mine drainage treatment, Ecol. Eng., 97 (2016) 179–185.
  33. Q. Mahmood, P. Zheng, J. Cai, D. Wu, B. Hu, J. Li, Anoxic sulphide biooxidation using nitrite as electron acceptor, J. Hazard. Mater., 147 (2007) 249–256.
  34. M. Rodríguez-González, J. Molina-Burgos, A. Jácome-Burgos, J. Suárez-López, Subsurface vertical flow constructed wetland for tertiary treatment of effluent of physical-chemical process of a domestic wastewater treatment plant, Ingeniería Investigación y Tecnología. XIV, 2 (2013) 223–235.
  35. L. Aguilar, Á. Gallegos, C.A. Arias, I. Ferrera, O. Sánchez, R. Rubio, M.B. Saad, B. Missagia, P. Caro, S. Sahuquillo, C. Pére, J. Morató, Microbial nitrate removal efficiency in groundwater polluted from agricultural activities with hybrid cork treatment wetlands, Sci. Total Environ., 653 (2019) 723–734.
  36. C. Tang, Y. Chen, Q. Zhang, J. Li, F. Zhang, Z. Liu, Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: screening plant species resisting and accumulating metals, Ecotoxicol. Environ. Saf., 176 (2019) 42–49.
  37. F. Duman, K.F. Ozturk, Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.), Res. J. Environ. Sci., 22, (2010) 526–532.
  38. J.M. Márquez-Reyes, A. Valdés-González, C. García-Gómez, H. Rodríguez-Fuentes, J. Gamboa-Delgado,
    H. Luna-Olvera, Evaluation of the synergistic effects of chromium and lead during the process of phytoremediation with watercress (Nasturtium officinale) in an artificial wetland, Biotecnia. XXII, 2 (2020) 171–178.
  39. X. Han, T.X. Zhou, S.W. Xu, Y. Li, Y.F. Wang, Y. Liu, Removal of Cr(VI) and phenol coupled with the reduction of sulfate by sulfate-reducing bacteria sludge, Int. J. Environ. Sci. Technol., 14 (2017) 2173–2180.
  40. S. Kataki, S. Chatterjee, M.G. Vairale, S.K. Dwivedi, D.K. Gupta, Constructed wetland, an eco-technology for wastewater treatment: a review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate), J. Environ. Manage., 283 (2021) 111986, doi: 10.1016/j.jenvman.2021.111986.
  41. P. Muri, R. Marinšek-Logar, P. Djinović, A. Pintar, Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions, Enzyme Microb. Technol., 111 (2018) 87–96.
  42. Y. Yang, Y.Q. Zhao, R.B. Liu, D. Morgan, Global development of various emerged substrates utilized in constructed wetlands, Bioresour. Technol., 261 (2018) 441–452.
  43. A. Batool, T.A. Saleh, Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators, Ecotoxicol. Environ. Saf., 189 (2020) 109924, doi: 10.1016/j.ecoenv.2019.109924.
  44. Y.T. Wang, Z.Q. Cai, S. Sheng, F. Pan, F.F. Chen, J. Fu, Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands, Sci. Total Environ., 701 (2020) 134736, doi: 10.1016/j.scitotenv.2019.134736.
  45. D.B. Kosolapov, P. Kuschk, M.B. Vainshtein, A.V. Vatsourina, A. Wießner, M. Kästner, R.A. Müller, Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands, Eng. Life Sci., 4 (2004) 403–411.
  46. M.A.O. Leguizamo, W.D.F. Gómez, M.C.G. Sarmiento, Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands a review, Chemosphere, 168 (2017) 1230–1247.