References
- H.I. Abdel-Shafy, M.A. El-Khateeb, M. Regelsberger,
R. El-Sheikh, M. Shehata, Integrated system for the treatment of
blackwater and greywater via UASB and constructed wetland
in Egypt, Desal. Water Treat., 8 (2009) 272–278.
- F. Tufaner, Post-treatment of effluents from UASB reactor
treating industrial wastewater sediment by constructed
wetland, Environ. Technol., 41 (2018) 912–920.
- A. Sarti, M. Zaiat, Anaerobic treatment of sulfate-rich
wastewater in an anaerobic sequential batch reactor (AnSBR)
using butanol as the carbon source, J. Environ. Manage.,
92 (2011) 1537–1541.
- R. Boopath, C.F. Kulpa, J. Manning, Anaerobic biodegradation
of explosives and related compounds by
sulfate-reducing and
methanogenic bacteria: a review, Bioresour. Technol., 63 (1998)
81–89.
- S. He, W. Hu, Y. Liu, Y. Xie, H. Zhou, X. Wang, J. Chen,
Y. Zhang, Mechanism of efficient remediation of U(VI) using
biogenic CMC-FeS complex produced by sulfate-reducing
bacteria, J. Hazard. Mater., 420 (2021) 126645, doi: 10.1016/j.jhazmat.2021.126645.
- X. Li, S.M. Lan, Z.P. Zhu, C. Zhang, G.M. Zeng, Y.G. Liu,
W.C. Cao, B. Song, H. Yang, S.F. Wang, S.H. Wu, The
bioenergetics mechanisms and applications of sulfate-reducing
bacteria in remediation of pollutants in drainage: a review,
Ecotoxicol. Environ. Saf., 158 (2018) 162–170.
- O.L. Zacarías-Estrada, L. Ballinas-Casarrubias, M.L. Montero-Cabrera, R. Loredo-Portales, E. Orrantia-Borunda, A. Luna-Velasco, Arsenic removal and activity of a sulfate reducing
bacteria-enriched anaerobic sludge using zero valent iron
as electron donor, J. Hazard. Mater., 384 (2020) 121392,
doi: 10.1016/j.jhazmat.2019.121392.
- J. Cao, G. Zhang, Z.S. Mao, Y. Li, Z. Fang, C. Yang, Influence of
electron donors on the growth and activity of sulfate-reducing
bacteria, Int. J. Miner. Process., 106–109 (2012) 58–64.
- E.W. Nogueira, L.A. Gouvêa de Godoi, L.N. Marques Yabuki,
G. Brucha, M.H.R.Z. Damianovic, Sulfate and metal removal
from acid mine drainage using sugarcane vinasse as electron
donor: performance and microbial community of the downflow
structured-bed bioreactor, Bioresour. Technol., 330 (2021)
124968, doi: 10.1016/j.biortech.2021.124968.
- R. Singh, A. Kumar, A. Kirrolia, R. Kumar, N. Yadav,
N.R. Bishnoi, R.K. Lohchab, Removal of sulphate, COD and
Cr(VI) in simulated and real wastewater by sulphate reducing
bacteria enrichment in small bioreactor and FTIR study,
Bioresour. Technol., 102 (2011) 677–682.
- J. Choi, F.K.F. Geronimo, M.C. Maniquiz-Redillas, M.J Kang,
L.H. Kim, Evaluation of a hybrid constructed wetland system
for treating urban storm water runoff, Desal. Water Treat.,
53 (2015) 3104–3110.
- T.D. Březinová, J. Vymazal, Distribution of heavy metals in
Phragmites australis growing in constructed treatment wetlands
and comparison with natural unpolluted sites, Ecol. Eng.,
175 (2022) 106505, doi: 10.1016/j.ecoleng.2021.106505.
- M.M. Nabuyanda, P. Kelderman, J.V. Bruggen, K. Irvine,
Distribution of the heavy metals Co, Cu, and Pb in sediments
and Typha spp. and Phragmites mauritianus in three Zambian
wetlands, J. Environ. Manage., 304 (2022) 114133, doi: 10.1016/j.jenvman.2021.114133.
- A. Castillo, F. Cecchi, J. Mata-Alvarez, A combined anaerobicaerobic
systems to treat domestic sewage in coastal areas, Water
Res., 31 (1997) 3057–3063.
- M.L. Merino-Solís, E. Villegas, J. de Anda, A. López-López,
The effect of the hydraulic retention time on the performance
of an ecological wastewater treatment system: an anaerobic
filter with a constructed wetland, Water, 7 (2015) 1149–1163.
- F. Duman, Z. Leblebic, A. Aksoy, Growth and bioaccumulation
characteristics of watercress (Nasturtium officinale R. BR.)
exposed to cadmium, cobalt and chromium, Chem. Speciation
Bioavailability, 21 (2009) 257–265.
- C. Cordeiro, P.J.C. Favas, J. Pratas, S.K. Sarkar, P. Venkatachalam,
Uranium accumulation in aquatic macrophytes in an uraniferous
region: relevance to natural attenuation, Chemosphere,
156 (2016) 76–87.
- L. Lin, L. Luo, M. Lian, X. Zhang, D. Yang, Cadmium
accumulation characteristics of emerged plant Nasturtium officinale R.BR, Resour. Environ. Yangtze Basin, 4 (2015) 50–60.
- K. Huang, L. Lin, F. Chen, M. Liao, J. Wang, Y. Tang, Y. Lai,
D. Liang, H. Xia, X. Wang, C. Jing, Z. Ping, Q. Mahmood,
Simultaneous sulfide and nitrate removal in anaerobic reactor
under shock loading, Bioresour. Technol., 100 (2009) 3010–3014.
- K. Li, L. Lin, J. Wang, H. Xia, D. Liang, X. Wang, M. Liao,
L. Wang, L. Liu, C. Chen, Y. Tang, Hyperaccumulator straw
improves the cadmium phytoextraction efficiency of emergent
plant Nasturtium officinale, Environ. Monit. Assess., 189 (2017)
374, doi: 10.1007/s10661-017-6106-0.
- APHA-AWWA-WEF, Standard Methods for the Examination
of Water and Wastewater, 21st ed., American Public Health
Association, American Water Works Association, Water
Environment Federation, Washington, DC, USA, 2005.
- E. Sahinkaya, A. Yurtsever, Y. Toker, H. Elcik, M. Cakmaci,
A.H. Kaksonen, Biotreatment of As-containing simulated acid
mine drainage using laboratory scale sulfate reducing upflow
anaerobic sludge blanket reactor, Miner. Eng., 75 (2015) 133–139.
- G. Yu, G. Wang, T. Chi, C. Du, J. Wang, P. Li, Y. Zhang, S. Wang,
K. Yang, Y. Long, H. Chen. Enhanced removal of heavy
metals and metalloids by constructed wetlands: a review of
approaches and mechanisms, Sci. Total Environ., 821 (2022)
153516, doi: 10.1016/j.scitotenv.2022.153516.
- L. Lefticariu, E.R. Walters, C.W. Pugh, K.S. Bender, Sulfate
reducing bioreactor dependence on organic substrates for
remediation of coal-generated acid mine drainage: field
experiments, J. Appl. Geochem., 63 (2015) 70–82.
- F. Bavandpour, Y.C. Zou, Y.H. He, T. Saeed, Y. Sun, G.Z. Sun,
Removal of dissolved metals in wetland columns filled with
shell grits and plant biomass, Chem. Eng. J., 331 (2018) 234–241.
- K. Lizama-Allende, J. Ayala, I. Jaque, P. Echeverría, The removal
of arsenic and metals from highly acidic water in horizontal
subsurface flow constructed wetlands with alternative
supporting media, J. Hazard. Mater., 408 (2021) 124832,
doi: 10.1016/j.jhazmat.2020.124832.
- R. Rabus, T.A. Hansen, F. Widdel, Dissimilatory Sulfate- and
Sulfur-Reducing Prokaryotes, E. Rosenberg, E.F. DeLong,
S. Lory, E. Stackebrandt, F. Thompson, Eds., The Prokaryotes,
Springer, Berlin, Heidelberg, 2013. doi:10.1007/978-3-64
- C. Guerrero-Barajas, A. Ordaz, C. Garibay-Orijel, S.M. García-
Solares, F. Bastida-Gonzalez, P.B. Zarate-Segura, Enhanced
sulfate reduction and trichloroethylene (TCE) biodegradation
in a UASB reactor operated with a sludge developed from
hydrothermal vents sediments: process and microbial ecology,
Int. Biodeterior. Biodegrad., 94 (2014) 182–191.
- B. Brahmacharimayum, P.K. Ghosh, Sulfate bioreduction and
elemental sulfur formation in a packed bed reactor, J. Environ.
Chem. Eng., 2 (2014) 1287–1293.
- R.A. Khalid, W.H. Patrick Jr., R.P. Gambrell, Effect of dissolved
oxygen on chemical transformations of heavy metals,
phosphorus, and nitrogen in an estuarine sediment, Estuarine
Coastal Shelf Sci., 6 (1978) 21–35.
- A. Pedescoll, R. Sidrach-Cardona, M. Hijosa-Valsero, E. Becares,
Design parameters affecting metals removal in horizontal
constructed wetlands for domestic wastewater treatment,
Ecol. Eng., 80 (2015) 92–99.
- C.J. Gandy, J.E. Davis, P.H.A. Orme, H.A. Potter, A.P. Jarvis,
Metal removal mechanisms in a short hydraulic residence time
subsurface flow compost wetland for mine drainage treatment,
Ecol. Eng., 97 (2016) 179–185.
- Q. Mahmood, P. Zheng, J. Cai, D. Wu, B. Hu, J. Li, Anoxic
sulphide biooxidation using nitrite as electron acceptor,
J. Hazard. Mater., 147 (2007) 249–256.
- M. Rodríguez-González, J. Molina-Burgos, A. Jácome-Burgos, J. Suárez-López, Subsurface vertical flow constructed
wetland for tertiary treatment of effluent of physical-chemical
process of a domestic wastewater treatment plant, Ingeniería
Investigación y Tecnología. XIV, 2 (2013) 223–235.
- L. Aguilar, Á. Gallegos, C.A. Arias, I. Ferrera, O. Sánchez,
R. Rubio, M.B. Saad, B. Missagia, P. Caro, S. Sahuquillo, C. Pére,
J. Morató, Microbial nitrate removal efficiency in groundwater
polluted from agricultural activities with hybrid cork
treatment wetlands, Sci. Total Environ., 653 (2019) 723–734.
- C. Tang, Y. Chen, Q. Zhang, J. Li, F. Zhang, Z. Liu, Effects of
peat on plant growth and lead and zinc phytostabilization
from lead-zinc mine tailing in southern China: screening plant
species resisting and accumulating metals, Ecotoxicol. Environ.
Saf., 176 (2019) 42–49.
- F. Duman, K.F. Ozturk, Nickel accumulation and its effect
on biomass, protein content and antioxidative enzymes in
roots and leaves of watercress (Nasturtium officinale R. Br.),
Res. J. Environ. Sci., 22, (2010) 526–532.
- J.M. Márquez-Reyes, A. Valdés-González, C. García-Gómez,
H. Rodríguez-Fuentes, J. Gamboa-Delgado,
H. Luna-Olvera,
Evaluation of the synergistic effects of chromium and lead
during the process of phytoremediation with watercress
(Nasturtium officinale) in an artificial wetland, Biotecnia. XXII,
2 (2020) 171–178.
- X. Han, T.X. Zhou, S.W. Xu, Y. Li, Y.F. Wang, Y. Liu, Removal
of Cr(VI) and phenol coupled with the reduction of sulfate by
sulfate-reducing bacteria sludge, Int. J. Environ. Sci. Technol.,
14 (2017) 2173–2180.
- S. Kataki, S. Chatterjee, M.G. Vairale, S.K. Dwivedi, D.K. Gupta,
Constructed wetland, an eco-technology for wastewater
treatment: a review on types of wastewater treated and
components of the technology (macrophyte, biolfilm and
substrate), J. Environ. Manage., 283 (2021) 111986, doi: 10.1016/j.jenvman.2021.111986.
- P. Muri, R. Marinšek-Logar, P. Djinović, A. Pintar, Influence
of support materials on continuous hydrogen production in
anaerobic packed-bed reactor with immobilized hydrogen
producing bacteria at acidic conditions, Enzyme Microb.
Technol., 111 (2018) 87–96.
- Y. Yang, Y.Q. Zhao, R.B. Liu, D. Morgan, Global development
of various emerged substrates utilized in constructed wetlands,
Bioresour. Technol., 261 (2018) 441–452.
- A. Batool, T.A. Saleh, Removal of toxic metals from wastewater
in constructed wetlands as a green technology; catalyst role of
substrates and chelators, Ecotoxicol. Environ. Saf., 189 (2020)
109924, doi: 10.1016/j.ecoenv.2019.109924.
- Y.T. Wang, Z.Q. Cai, S. Sheng, F. Pan, F.F. Chen, J. Fu,
Comprehensive evaluation of substrate materials for
contaminants removal in constructed wetlands, Sci. Total
Environ., 701 (2020) 134736, doi: 10.1016/j.scitotenv.2019.134736.
- D.B. Kosolapov, P. Kuschk, M.B. Vainshtein, A.V. Vatsourina,
A. Wießner, M. Kästner, R.A. Müller, Microbial processes
of heavy metal removal from carbon-deficient effluents in
constructed wetlands, Eng. Life Sci., 4 (2004) 403–411.
- M.A.O. Leguizamo, W.D.F. Gómez, M.C.G. Sarmiento,
Native herbaceous plant species with potential use in
phytoremediation of heavy metals, spotlight on wetlands a
review, Chemosphere, 168 (2017) 1230–1247.