References

  1. R.C. Bansal, M. Goyal, Activated Carbon Adsorption, CRC Press, Boca Raton, 2005.
  2. J. Sahira, A. Mandira, P.B. Prasad, P.R. Ram, Effects of activating agents on the activated carbons prepared from Lapsi seed stone, Res. J. Chem. Sci., 3 (2013) 19–24.
  3. F. Oguz Erdogan, T. Kopac, Adsorption behavior of alcohol vapors on Zonguldak-Karadon coal derived porous carbons, Energy Sources Part A, (2019) 1–22, doi: 10.1080/15567036.2019.1666191.
  4. N. Isoda, R. Rodrigues, A. Silva, M. Gonçalves, D. Mandelli, F.C.A. Figueiredo, W.A. Carvalho, Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design, Powder Technol., 256 (2014) 175–181.
  5. D.L. Pyle, C.A. Zaror, Heat transfer and kinetics in the low temperature pyrolysis of solids, Chem. Eng. Sci., 39 (1984) 147–158.
  6. T. Kopac, Hydrogen storage characteristics of bio‐based porous carbons of different origin: a comparative review, Int. J. Energy Res., 45 (2021) 20497–20523.
  7. I. Ozdemir, M. Şahin, R. Orhan, M. Erdem, Preparation and characterization of activated carbon from grape stalk by zinc chloride activation, Fuel Process. Technol., 125 (2014) 200–206.
  8. A.K. Dey, A. Dey, M. Brahma, Design of an overhead Tank for the Newly Built Guest House in CIT (Central Institute of Technology, Assam), Int. J. Eng. Technol., 9 (2017) 73–83.
  9. H. Haykiri-Acma, S. Yaman, S. Kucukbayrak, Gasification of biomass chars in steam–nitrogen mixture, Energy Convers. Manage., 47 (2006) 1004–1013.
  10. A. Sharma, T.R. Rao, Kinetics of pyrolysis of rice husk, Bioresour. Technol., 67 (1999) 53–59.
  11. A. Marcilla, S. Garcıa-Garcıa, M. Asensio, J.A. Conesa, Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells, Carbon, 38 (2000) 429–440.
  12. A.K. Dey, A. Dey, S. Sukladas, 3N formulation of the horizontal slice method in evaluating pseudostatic method for analysis of seismic active earth pressure, Int. J. Geomech., 17 (2017) 04016037.
  13. P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes Pigm., 56 (2003) 239–249.
  14. A. Baçaoui, A. Yaacoubi, A. Dahbi, C. Bennouna, R.P.T. Luu, F.J. Maldonado-Hodar, C. Moreno-Castilla, Optimization of conditions for the preparation of activated carbons from olivewaste cakes, Carbon, 39 (2001) 425–432.
  15. M. Ahmednaa, W.E. Marshall, R.M. Rao, Production of granular activated carbons from select agricultural
    by-products and evaluation of their physical, chemical and adsorption properties, Bioresour. Technol., 71 (2000) 113–123.
  16. T. Zhang, W.P. Walawender, L.T. Fan, M. Fan, D. Daugaard, R.C. Brown, Preparation of activated carbon from forest and agricultural residues through CO2 activation, Chem. Eng. J., 105 (2004) 53–59.
  17. R. Goswami, A.K. Dey, A. Dey, Positive impact of environment due to Covid-19 lockdowns in parts of India: a review, Environ. Eng. Manage. J., 21 (2022) 559–568.
  18. W.T. Tsai, C.Y. Chang, S.L. Lee, Preparation and characterization of activated carbons from corncob, Carbon, 35 (1997) 1198–1200.
  19. G.H. Oh, C.R. Park, Preparation and characteristics of rice straw-based porous carbons with high adsorption capacity, Fuel, 81 (2002) 327–336.
  20. A. Ahmadpour, D.D. Do, The preparation of activated carbon from Macadamia nutshell by chemical activation, Carbon, 35 (1997) 1723–1732.
  21. R. Goswami, A.K. Dey, Cationic dye removal using surface treated activated carbon as an adsorbent, Environ. Sci. Water Res. Technol., 8 (2022) 2545–2566.
  22. A.N.A. El-Hendawy, S.E. Samra, B.S. Girgis, Adsorption characteristics of activated carbons obtained from corncobs, Colloids Surf., A, 180 (2001) 209–221.
  23. A.E. Pütün, N. Özbay, E.P. Önal, E. Pütün, Fixed-bed pyrolysis of cotton stalk for liquid and solid products, Fuel Process. Technol., 86 (2005) 1207–1219.
  24. W.T. Tsai, C.Y. Chang, S.Y. Wang, C.F. Chang, S.F. Chien, H.F. Sun, Cleaner production of carbon adsorbents by utilizing agricultural waste corncob, Resour. Conserv. Recycl., 32 (2001) 43–53.
  25. M. Ahmedna, W.E. Marshall, A.A. Husseiny, R.M. Rao, I. Goktepe, The use of nutshell carbons in drinking water filters for removal of trace metals, Water Res., 38 (2004) 1062–1068.
  26. D. Savova, E. Apak, E. Ekinci, F. Yardim, N. Petrov, T. Budinova, V. Minkova, Biomass conversion to carbon adsorbents and gas, Biomass Bioenergy, 21 (2001) 133–142.
  27. N. Yalcın, V. Sevinc, Studies of the surface area and porosity of activated carbons prepared from rice husks, Carbon, 38 (2000) 1943–1945.
  28. M. Kılıç, E. Apaydın-Varol, A.E. Pütün, Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4, Appl. Surf. Sci., 261 (2012) 247–254.
  29. J.T. Nwabanne, P.K. Igbokwe, Preparation of activated carbon from Nipa palm nut: influence of preparation conditions, Res. J. Chem. Sci., 1 (2011) 53–58.
  30. A. Marcilla, S. Garcıa-Garcıa, M. Asensio, J.A. Conesa, Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells, Carbon, 38 (2000) 429–440.
  31. M. Lanzetta, C. Di Blasi, Pyrolysis kinetics of wheat and corn straw, J. Anal. Appl. Pyrolysis, 44 (1998) 181–192.
  32. Q. Cao, K.C. Xie, W.R. Bao, S.G. Shen, Pyrolytic behavior of waste corncob, Bioresour. Technol., 94 (2004) 83–89.
  33. H. Haykiri-Acma, S. Yaman, S. Kucukbayrak, Gasification of biomass chars in steam–nitrogen mixture, Energy Convers. Manage., 47 (2006) 1004–1013.
  34. A.K. Dey, A. Dey, R. Goswami, Adsorption characteristics of methyl red dye by Na2CO3-treated jute fibre using multi-criteria decision making approach, Appl. Water Sci., 12 (2022) 1–22.
  35. S.G.J. Heijman, R. Hopman, Activated carbon filtration in drinking water production: model prediction and new concepts, Colloids Surf., A, 151 (1999) 303–310.
  36. A.C. Lua, T. Yang, J. Guo, Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachionutshells, J. Anal. Appl. Pyrolysis, 72 (2004) 279–287.
  37. M. Bellais, K.O. Davidsson, T. Liliedahl, K. Sjöström, J.B.C Pettersson, Pyrolysis of large wood particles: a study of shrinkage importance in simulations, Fuel, 82 (2003) 1541–1548.
  38. G. Dursun, H. Çiçek, A.Y. Dursun, Adsorption of phenol from aqueous solution by using carbonised beet pulp, J. Hazard. Mater., 125 (2005) 175–182.
  39. A. Aygün, S. Yenisoy-Karakaş, I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous Mesoporous Mater., 66 (2003) 189–195.
  40. A.K. Dey, A. Dey, S. Sukladas, Analysis of production of CH4 and CO2 from food waste (MSW) by anaerobic digestion (dry system) under mesophilic condition, Int. J. Mod. Trends Sci. Technol., 3 (2014) 86–92.
  41. T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.T. Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175 (2005) 305–316.
  42. S. Ricordel, S. Taha, I. Cisse, G. Dorange, Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling, Sep. Purif. Technol., 24 (2001) 389–401.
  43. K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, S. Pattabhi, Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions, Bioresour. Technol., 87 (2003) 129–132.
  44. R. Goswami, A.K. Dey, Synthesis and application of treated activated carbon for cationic dye removal from modelled aqueous solution, Arabian J. Chem., 15 (2022) 104290, doi: 10.1016/j.arabjc.2022.104290.
  45. I. Martın-Gullón, R. Font, Dynamic pesticide removal with activated carbon fibers, Water Res., 35 (2001) 516–520.
  46. N.W. Brown, E.P.L. Roberts, A. Chasiotis, T. Cherdron, N. Sanghrajka, Atrazine removal using adsorption and electrochemical regeneration, Water Res., 38 (2004) 3067–3074.
  47. L.E. Sojo, A. Brocke, J. Fillion, S.M. Price, Application of activated carbon membranes for on-line cleanup of vegetable and fruit extracts in the determination of pesticide multiresidues by gas chromatography with mass selective detection, J. Chromatogr. A, 788 (1997) 141–154.
  48. R. Goswami, A.K. Dey, Use of anionic surfactant-modified activated carbon for efficient adsorptive removal of crystal violet dye, Adsorpt. Sci. Technol., 2022 (2022) 2357242, doi: 10.1155/2022/2357242.
  49. A. Kouras, A. Zouboulis, C. Samara, T. Kouimtzis, Removal of pesticides from surface waters by combined physicochemical processes. Part I: Dodine, Chemosphere, 30 (1995) 2307–2315.
  50. E. Ayranci, N. Hoda, Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth, Chemosphere, 60 (2005) 1600–1607.
  51. H. Murayama, N. Moriyama, H. Mitobe, H. Mukai, Y. Takase, K.I. Shimizu, Y. Kitayama, Evaluation of activated carbon fiber filter for sampling of organochlorine pesticides in environmental water samples, Chemosphere, 52 (2003) 825–833.
  52. A.K. Dey, A. Dey, Selection of Optimal Processing Condition During Removal of Methylene Blue Dye Using Treated Betel Nut Fibre Implementing Desirability Based RSM Approach, P. Kayaroganam, Ed., Response Surface methodology in Engineering Science, InTechOpen, 2020, doi: 10.5772/intechopen.98428.
  53. A.A.M. Daifullah, B.S. Girgis, H.M.H. Gad, Utilization of agro-residues (rice husk) in small wastewater treatment plans, Mater. Lett., 57 (2003) 1723–1731.
  54. S.G.J. Heijman, R. Hopman, Activated carbon filtration in drinking water production: model prediction and new concepts, Colloids Surf., A, 151 (1999) 303–310.
  55. A.K. Dey, A. Dey, R. Goswami, Fixed-bed column analysis for adsorption of Acid scarlet 3R dye from aqueous solution onto chemically modified betel nut husk fibre, Desal. Water Treat., 252 (2022) 381–390.
  56. A.H. El-Sheikh, A.P. Newman, H.K. Al-Daffaee, S. Phull, N. Cresswell, Characterization of activated carbon prepared from a single cultivar of Jordanian olive stones by chemical and physicochemical techniques, J. Anal. Appl. Pyrolysis, 71 (2004) 151–164.
  57. A.K. Dey, A. Dey, Selection of optimal processing condition during removal of Reactive Red 195 by NaOH treated jute fibre using adsorption, Groundwater Sustainable Dev., 12 (2021) 100522, doi: 10.1016/j.gsd.2020.100522.
  58. S. Vitolo, M. Seggiani, Mercury removal from geothermal exhaust gas by sulfur-impregnated and virgin activated carbons, Geothermics, 31 (2002) 431–442.
  59. A.A.M. Daifullah, B.S. Girgis, H.M.H. Gad, Utilization of agroresidues (rice husk) in small wastewater treatment plans, Mater. Lett., 57 (2003) 1723–1731.
  60. E. Ayranci, N. Hoda, Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth, Chemosphere, 60 (2005) 1600–1607.
  61. A.K. Dey, U. Kumar, A. Dey, Use of response surface methodology for the optimization of process parameters for the removal of Congo red by NaOH treated jute fibre, Desal. Water Treat., 115 (2018) 300–314.
  62. I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, A. Yasutake, Removal of SOx and NOx over activated carbon fibers, Carbon, 38 (2000) 227–239.
  63. J.A. Caballero, J.A. Conesa, R. Font, A. Marcilla, Pyrolysis kinetics of almond shells and olive stones considering their organic fractions, J. Anal. Appl. Pyrolysis, 42 (1997) 159–175.
  64. P. Ollero, A. Serrera, R. Arjona, S. Alcantarilla, The CO2 gasification kinetics of olive residue, Biomass Bioenergy, 24 (2003) 151–161.
  65. A.A. Zabaniotou, G. Kalogiannis, E. Kappas, A.J. Karabelas, Olive residues (cuttings and kernels) rapid pyrolysis product yields and kinetics, Biomass Bioenergy, 18 (2000) 411–420.
  66. A.K. Dey, U. Kumar, Adsorption of anionic azo dye Congo red from aqueous solution onto NaOH-modified jute fibre, Desal. Water Treat., 92 (2017) 301–308.
  67. S. Kiran, U. Kumar, A.K. Dey, Three dimensional numerical simulation of vortex structures in Barak River, Appl. Mech. Mater., 772 (2015) 120–124.
  68. R.K. Jalan, V.K. Srivastava, Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects, Energy Convers. Manage., 40 (1999) 467–494.
  69. V. Skoulou, A. Zabaniotou, Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production, Renewable Sustainable Energy Rev., 11 (2007) 1698–1719.
  70. A.K. Dey, A. Dey, R. Goswami, Selection of optimal performance characteristics during adsorption of Methyl red dye using sodium carbonate treated jute fibre, Desal. Water Treat., 260 (2022) 187–202.
  71. A.K. Dey, U. Kumar, Adsorption of Reactive Red 195 from polluted water upon Na2CO3 modified jute fibre, Int. J. Eng. Technol., 9 (2017) 53–58.
  72. C.A. Koufopanos, N. Papayannakos, G. Maschio, A. Lucchesi, Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects, Can. J. Chem. Eng., 69 (1991) 907–915.
  73. E.J. Kansa, H.E. Perlee, R.F. Chaiken, Mathematical model of wood pyrolysis including internal forced convection, Combust. Flame, 29 (1977) 311–324.
  74. M.A. Ibrahim, T.A. Saleh, Synthesis of efficient stable dendrimermodified carbon for cleaner drilling shale inhibition, J. Environ. Chem. Eng., 9 (2021) 104792, doi: 10.1016/j.jece.2020.104792.
  75. M.K. Arfaj, A. Rana, T.A. Saleh, Highly Efficient Modified Activated Carbon as Shale Inhibitor for Water Based Drilling Mud Modification, Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2020.
  76. K. Miyanami, L.S. Fan, L.T. Fan, W.P. Walawender, Mathematicalmodel for pyrolysis of solid particle-effects of heat of reaction, Can. J. Chem. Eng., 55 (1977) 317–325.
  77. L.F. Calvo, M. Otero, B.M. Jenkins, A. Moran, A.I. Garcıa, Heating process characteristics and kinetics of rice straw in different atmospheres, Fuel Process. Technol., 85 (2004) 279–291.
  78. G. Chaudhary, A. Dey, A.K. Dey, S. Das, Delamination analysis of fly drop-off in tapered laminated composite, Int. J. Eng. Technol., 9 (2017) 32–36.