References
- I. Xagoraraki, D. Kuo, Water Pollution: Emerging Contaminants
Associated With Drinking Water,
H.K. (Kris) Heggenhougen,
Ed., International Encyclopedia of Public Health, Academic
Press, Elsevier, USA, 2008, pp. 539–550. doi: 10.1016/B978-012373960-5.00292-6
- S. Alsherbeny, T.S. Jamil, S.A.M. El-Sawi, F.I. Eissa, Low-cost
corn cob biochar for pesticides removal from water, Egypt. J.
Chem., 65 (2022) 639–650.
- T. Ahmad, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim,
A. Ahmad, Removal of pesticides from water and wastewater
by different adsorbents: a review, J. Environ. Sci. Health., Part C
Environ. Carcinog. Ecotoxicol. Rev., 28 (2010) 231–271.
- K. Aziz, F. Aziz, R. Mamouni, L. Aziz, N. Saffaj, Engineering
of highly Brachychiton populneus shells@polyaniline biosorbent
for efficient removal of pesticides from wastewater:
optimization using BBD-RSM approach, J. Mol. Liq., 346 (2022)
117092, doi: 10.1016/j.molliq.2021.117092.
- T. Rasheed, S. Shafi, M. Bilal, T. Hussain, F. Sher, K. Rizwan,
Surfactants-based remediation as an effective approach for
removal of environmental pollutants—a review, J. Mol. Liq.,
318 (2020) 113960, doi: 10.1016/j.molliq.2020.113960.
- S.G. Mohammad, S.M. Ahmed, Preparation of environmentally
friendly activated carbon for removal of pesticide from aqueous
media, Int. J. Ind. Chem., 8 (2017) 121–132.
- S.G. Mohammad, S.M. Ahmed, A.F.M. Badawi, A comparative
adsorption study with different agricultural waste adsorbents
for removal of oxamyl pesticide, Desal. Water Treat., 55 (2015)
2109–2120.
- H. Li, F. Wang, J. Li, S. Deng, S. Zhang, Adsorption of three
pesticides on polyethylene microplastics in aqueous solutions:
kinetics, isotherms, thermodynamics, and molecular dynamics
simulation, Chemosphere, 264 (2021) 128556, doi: 10.1016/j.chemosphere.2020.128556.
- X. Shi, C. Cheng, F. Peng, W. Hou, X. Lin, X. Wang,
Adsorption properties of graphene materials for pesticides:
structure effect, J. Mol. Liq., 364 (2022) 119967, doi: 10.1016/j.
molliq.2022.119967.
- I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal
of organic pollutants from wastewater, J. Environ. Manage.,
113 (2012) 170–183.
- M. Qiu, L. Liu, Q. Ling, Y. Cai, S. Yu, S. Wang, D. Fu, B. Hu,
X. Wang, Biochar for the removal of contaminants from soil
and water: a review, Biochar, 4 (2022) 1–25.
- P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison
of various advanced oxidation processes for the degradation of
4-chloro-2 nitrophenol, J. Hazard. Mater., 149 (2007) 609–614.
- R. Baetan, I. Oltean, A. Rocco, P. Francesco, Application of
low-cost adsorbents for pesticide removal, Bull. Univ. Agric.
Sci. Vet. Med. Cluj-Napoca Agric., 72 (2015), doi: 10.15835/buasvmcn-agr:10619.
- N.K. Daud, U.G. Akpan, B.H. Hameed, Decolorization of
Sunzol Black DN conc. in aqueous solution by Fenton oxidation
process: effect of system parameters and kinetic study,
Desal. Water Treat., 37 (2012) 1–7.
- A. Mojiri, R.A. Kazeroon, A. Gholami, Cross-linked
magnetic chitosan/activated biochar for removal of emerging
micropollutants from water: optimization by the artificial
neural network, Water (Switzerland), 11 (2019) 1–18.
- A. Jusoh, S.S. Lam, W.J.H. Hartini, N. Ali, Removal of pesticide
in agricultural runoff using granular-activated carbon:
a simulation study using a fixed-bed column approach,
Desal. Water Treat., 52 (2014) 861–866.
- K. Ohno, T. Minami, Y. Matsui, Y. Magara, Effects of chlorine
on organophosphorus pesticides adsorbed on activated carbon:
desorption and oxon formation, Water Res., 42 (2008) 1753–1759.
- Y. Wang, C. Lin, X. Liu, W. Ren, X. Huang, M. He, W. Ouyang,
Efficient removal of acetochlor pesticide from water using
magnetic activated carbon: adsorption performance,
mechanism, and regeneration exploration, Sci. Total Environ.,
778 (2021) 146353, doi: 10.1016/j.scitotenv.2021.146353.
- Y. Wang, S. Ling Wang, T. Xie, J. Cao, Activated carbon derived
from waste tangerine seed for the high-performance adsorption
of carbamate pesticides from water and plant, Bioresour.
Technol., 316 (2020) 123929, doi: 10.1016/j.biortech.2020.123929.
- B.H. Hameed, J.M. Salman, A.L. Ahmad, Adsorption isotherm
and kinetic modeling of 2,4-D pesticide on activated carbon
derived from date stones, J. Hazard. Mater., 163 (2009) 121–126.
- J. Růžičková, H. Raclavská, M. Šafář, M. Kucbel, K. Raclavský,
A. Grobelak, B. Švédová, D. Juchelková, The occurrence
of pesticides and their residues in char produced by the
combustion of wood pellets in domestic boilers, Fuel, 293 (2021,
doi: 10.1016/j.fuel.2021.120452.
- J.M. Salman, Optimization of preparation conditions for
activated carbon from palm oil fronds using response surface
methodology on removal of pesticides from aqueous solution,
Arabian J. Chem., 7 (2014) 101–108.
- W.E. Ndifreke, N. Pasaoglulari Aydinlik, KOH modified
Thevetia peruviana shell activated carbon for sorption of
dimethoate from aqueous solution, J. Environ. Sci. Health.,
Part B, 54 (2019) 1–13.
- T. Kopac, Y. Kırca, A. Toprak, Synthesis and characterization
of KOH/boron modified activated carbons from coal and their
hydrogen sorption characteristics, Int. J. Hydrogen Energy,
42 (2017) 23606–23616.
- E. Ayranci, N. Hoda, Adsorption kinetics and isotherms of
pesticides onto activated carbon-cloth, Chemosphere, 60 (2005)
1600–1607.
- V.O. Njoku, B.H. Hameed, Preparation and characterization
of activated carbon from corncob by chemical activation
with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption,
Chem. Eng. J., 173 (2011) 391–399.