References

  1. F.J. Gomes da Silva, R.M. Gouveia, Global Population Growth and Industrial Impact on the Environment, Cleaner Production, Springer, Cham, 2020, pp. 33–75.
  2. L. Ma, Y. Chen, J. Zheng, An efficient, stable and reusable polymer/TiO2 photocatalytic membrane for aqueous pollution treatment, J. Mater. Sci., 56 (2021) 11335–11351.
  3. V. Maria Vinosel, S. Anand, M. Asisi Janifer, S. Pauline, S. Dhanavel, P. Praveena, A. Stephen, Enhanced photocatalytic activity of Fe3O4/SnO2 magnetic nanocomposite for the degradation of organic dye, J. Mater. Sci. - Mater. Electron., 30 (2019) 9663–9677.
  4. A. Mohagheghian, K. Ayagh, K. Godini, M. Shirzad-Siboni, Improved photocatalytic removal of acid red 14 by aminofunctionalized of Fe3O4-WO3 nanoparticles from aqueous solutions in the presence of UV irradiation, Desal. Water Treat., 74 (2017) 371–382.
  5. S. Merabet, A.A. Assadi, A. Bouzaza, D. Wolbert, Photocatalytic degradation of indole–4-methylphenol mixture in an aqueous solution: optimization and statistical analysis, Desal. Water Treat., 57 (2015) 1–12.
  6. X. Hian, R. Ji, Photocatalytic degradation of methyl blue by tourmaline-coated TiO2 nanoparticles, Desal. Water Treat., 57 (2015) 19292–19300.
  7. X. Pang, N. Skillen, N. Gunaratne, D.W. Rooney, P.K.J. Robertson, Removal of phthalates from aqueous solution by semiconductor photocatalysis: a review, J. Hazard. Mater., 402 (2021) 123461, doi: 10.1016/j.jhazmat.2020.123461.
  8. M.B. Wilker, K.J. Schnitzenbaumer, G. Dukovic, Recent progress in photocatalysis mediated by colloidal II-VI nanocrystals, Isr. J. Chem., 52 (2012) 1002–1015.
  9. J. Zhang, Y. Wang, J. Zhang, Z. Lin, F. Huang, J. Yu, Enhanced photocatalytic hydrogen production activities of au-loaded ZnS flowers, ACS Appl. Mater. Interfaces, 5 (2013) 1031–1037.
  10. R. Zhang, J. Xie, C. Wang, J. Liu, X. Zheng, Y. Li, X. Yang, H.-E. Wang, B.-L. Su, Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation, J. Mater. Sci., 52 (2017) 11124–11134.
  11. G. Wang, B. Huang, Z. Li, Z. Lou, Z. Wang, Y. Dai, M.-H. Whangbo, Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light, Sci. Rep.-UK, 5 (2015) 8544, doi: 10.1038/srep08544.
  12. R. Zhou, M.I. Guzman, CO2 reduction under periodic illumination of ZnS, J. Phys. Chem. C, 118 (2014) 11649–11656.
  13. C. Silva Ribeiro, M. Azário Lansarin, Facile solvo-hydrothermal synthesis of Bi2MoO6 for the photocatalytic reduction of CO2 into ethanol in water under visible light, React. Kinet. Mech. Catal., 127 (2019) 1059–1071.
  14. C.L. Torres-Martínez, R. Kho, O.I. Mian, R.K. Mehra, Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals, J. Colloid Interface Sci., 240 (2001) 525–532.
  15. M. Sharma, T. Jain, S. Singh, O.P. Pandey, Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles, Sol. Energy, 86 (2012) 626–633.
  16. A.A.P. Mansur, H.S. Mansur, F.P. Ramanery, L.C. Oliveira, P.P. Souza, “Green” colloidal ZnS quantum dots/chitosan nanophotocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants, Appl. Catal., B, 158 (2014) 269–279.
  17. H.R. Pouretedal, A.M. Sohrabi, Photosensitization of TiO2 by ZnS and bromo thymol blue and its application in photodegradation of para-nitrophenol, J. Iran. Chem. Soc., 13 (2016) 73–79.
  18. X. Li, C. Hu, H. Liu, J. Xu, B. Wan, X. Wang, ZnS nanoparticles self-assembled from ultrafine particles and their highly photocatalytic activity, Physica E, 43 (2011) 1071–1075.
  19. D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, Z. Lin, ZnS nano-architectures: photocatalysis, deactivation and regeneration, Nanoscale, 2 (2010) 2062–2064.
  20. J. Saleem, U. Bin Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
  21. О.D. Linnikov, I.V. Rodina, I.V. Baklanova, A.Yu. Suntsov, A.P. Tyutyunnik, Sorption of copper(II) ions from aqueous solution by activated carbon BAU-A and coal sorbent MIU-S. The relationship between the structure of sorbents and their sorption properties, Water Sci. Technol., 85 (2022) 3088–3106.
  22. R. Foroutan, R. Mohammadi, A.S. Adeleye, S. Farjadfard, Z. Esvandi, H. Arfaeinia, G.A. Sorial, B. Ramavandi, S. Sahebi, Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents, Environ. Sci. Pollut. Res., 26 (2019) 29748–29762.
  23. H. Dang, L. Chen, L. Chen, M. Yuan, Z. Yan, M. Li, Hydrothermal synthesis of 1T-WS2 nanosheets with excellent adsorption performance for dye removal from wastewater, Mater. Lett., 254 (2019) 42–45.
  24. N. Madima, K.K. Kefeni, S.B. Mishra, A.K. Mishra, A.T. Kuvarega, Fabrication of magnetic recoverable
    Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye, Inorg. Chem. Commun., 145 (2022) 109966, doi: 10.1016/j.inoche.2022.109966.
  25. H. Safajou, M. Ghanbari, O. Amiri, H. Khojasteh, F. Namvar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water, Int. J. Hydrogen Energy, 46 (2021) 20534–20546.
  26. C.A. Arguello, D.L. Rousseau, S.P.S. Porto, First-order Raman effect in Wurtzite-type crystals, Phys. Rev., 181 (1969) 1351–1363.