References

  1. X. Dai, Applications and perspectives of sludge treatment and disposal in China, Science, 72 (2020) 30–34.
  2. J.W.C. Wong, J. Zhou, M.B. Kurade, K. Murugesan, Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching, Bioresour. Technol., 179 (2015) 78–83.
  3. J. Abelleira, S.I. Pérez-Elvira, J.R. Portela, J. Sánchez-Oneto, E. Nebot, Advanced thermal hydrolysis: optimization of a novel thermochemical process to aid sewage sludge treatment, Environ. Sci. Technol., 46 (2012) 6158–6166.
  4. M.B. Kurade, K. Murugesan, A. Selvam, S.-M. Yu, J.W.C. Wong, Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability, Bioresour. Technol., 217 (2016) 179–185.
  5. F. Liu, L. Zhou, J. Zhou, X. Song, D. Wang, Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH, J. Hazard. Mater., 221–222 (2012) 170–177.
  6. M. Niu, W. Zhang, D. Wang, Y. Chen, R. Chen, Correlation of physico-chemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants, Bioresour. Technol., 144 (2013) 337–343.
  7. X. Feng, J. Deng, H. Lei, T. Bai, Q. Fan, Z. Li, Dewaterability of waste activated sludge with ultrasound conditioning, Bioresour. Technol., 100 (2009) 1074–1081.
  8. G. Zhen, X. Yan, H. Zhou, H. Chen, T. Zhao, Y. Zhao, Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge, J. Environ. Sci., 23 (2011) 1225–1232.
  9. Y. Lu, R. Wu, J. Zhang, H. Liu, Y. Dai, Effects of phase separation on dewaterability promotion and heavy metal removal of sewage sludge during bioleaching, Environ. Sci. Pollut. Res., 29 (2022) 13971–13982.
  10. X. Zhang, P. Ye, Y. Wu, Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: a review, J. Environ. Manage., 321 (2022) 115938, doi: 10.1016/j.jenvman.2022.115938.
  11. M. Cai, Q. Wang, G. Wells, D.D. Dionysiou, Z. Song, M. Jin, J. Hu, S.-H. Ho, R. Xiao, Z. Wei, Improving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatment, Chem. Eng. J., 362 (2019) 525–536.
  12. W. Ding, W. Jin, X. Zhou, L. Wang, Y. Xiu, Y. Mao, X. Feng, A comparative study of waste activated sludge conditioning with Fe(II)-peroxymonosulfate oxidative process, Bioresour. Technol. Rep., 11 (2020) 100434, doi: 10.1016/j.biteb.2020.100434.
  13. C. Wu, L. Jin, P. Zhang, G. Zhang, Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation, Int. Biodeterior. Biodegrad., 102 (2015) 137–142.
  14. J.W.C. Wong, L. Xiang, X.Y. Gu, L.X. Zhou, Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source, Chemosphere, 55 (2004) 101–107.
  15. B. Tian, Y. Cui, Z. Qin, L. Wen, Z. Li, H. Chu, B. Xin, Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM), J. Environ. Manage., 312 (2022) 114927, doi: 10.1016/j.jenvman.2022.114927.
  16. W. Yang, L. Zeng, W. Zhang, Q. Yang, T. Wang, H. Xiong, The influence of different sludge concentrations on its dewaterability during bioleaching, Water Sci. Technol., 81 (2020) 2585–2598.
  17. F. Liu, J. Zhou, D. Wang, L. Zhou, Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods, J. Environ. Sci., 24 (2012) 1403–1410.
  18. S. Wang, G. Zheng, L. Zhou, Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species, Water Res., 44 (2010) 5423–5431.
  19. G. Zheng, L. Zhou, S. Wang, An acid-tolerant heterotrophic microorganism role in improving tannery sludge bioleaching conducted in successive multibatch reaction systems, Environ. Sci. Technol., 43 (2009) 4151–4156.
  20. A. Pathak, M.G. Dastidar, T.R. Sreekrishnan, Bioleaching of heavy metals from sewage sludge: a review, J. Environ. Manage., 90 (2009) 2343–2353.
  21. Y. Ban, L. Li, C. Liu, Y. Yan, J. Gao, J. Zhang, J. Gao, Enhancing sludge dewatering and heavy metal removal by bioleaching with Na2S2O3 as substrates, Water Sci. Technol., 78 (2018) 1545–1555.
  22. D.P. Kelly, A.P. Wood, Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov, Int. J. Syst. Evol. Microbiol., 50 (2000) 511–516.
  23. L. Yun Bei, J. Li Song, Q. Jing Yao, Z. Xu Chen, Y. Wei, H. Long Li, M. Xiao Wang, B. Jing Wang, J. Min Zhou, Effects of dissolved oxygen on the sludge dewaterability and extracellular polymeric substances distribution by bioleaching, Chemosphere, 281 (2021) 130906, doi: 10.1016/j.chemosphere.2021.130906.
  24. D. Fang, L.-X. Zhou, Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor, Chemosphere, 69 (2007) 303–310.
  25. X.-Y. Gu, J.W.C. Wong, Degradation of inhibitory substances by heterotrophic microorganisms during bioleaching of heavy metals from anaerobically digested sewage sludge, Chemosphere, 69 (2007) 311–318.
  26. G. Liu, A. Fernandez, Y. Cai, Complexation of arsenite with humic acid in the presence of ferric iron, Environ. Sci. Technol., 45 (2011) 3210–3216.
  27. J.-M. Fontmorin, M. Sillanpää, Bioleaching and combined bioleaching/Fenton-like processes for the treatment of urban anaerobically digested sludge: removal of heavy metals and improvement of the sludge dewaterability, Sep. Purif. Technol., 156 (2015) 655–664.
  28. R.C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018.
  29. J. Gao, N. Ma, L. Li, S. Zhu, Y. Li, J. Chen, Y. Chen, Improvement of sewage sludge dewaterability by bioleaching in a continuous plug flow bioreactor: optimization of process parameters, Water Sci. Technol., 77 (2018) 1979–1989.
  30. X. Gu, J.W.C. Wong, Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge, Environ. Sci. Technol., 38 (2004) 2934–2939.
  31. G. Cai, M. Ebrahimi, G. Zheng, A.H. Kaksonen, C. Morris, I.M. O’Hara, Z. Zhang, Effect of ferrous iron loading on dewaterability, heavy metal removal and bacterial community of digested sludge by Acidithiobacillus ferrooxidans, J. Environ. Manage., 295 (2021) 113114, doi: 10.1016/j.jenvman.2021.113114.
  32. A. Ghavidel, S. Naji Rad, H.A. Alikhani, M. Sharari, A. Ghanbari, Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH?, J. Mater. Cycles Waste Manage., 20 (2018) 1179–1187.
  33. B. Zheng, B. Li, H. Wan, X. Lin, Y. Cai, Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment, J. Hazard. Mater., 431 (2022) 128611, doi: 10.1016/j.jhazmat.2022.128611.
  34. A. Pathak, M.G. Dastidar, T.R. Sreekrishnan, Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study, J. Hazard. Mater., 171 (2009) 273–278.
  35. Y. Zhu, G.M. Zeng, P.Y. Zhang, C. Zhang, M.M. Ren, J.C. Zhang, M. Chen, Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge, Bioresour. Technol., 142 (2013) 530–534.
  36. M. Zhang, X. Guo, B. Tian, J. Wang, S. Qi, Y. Yang, B. Xin, Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms, Waste Manage., 87 (2019) 629–635.
  37. Y.-X. Chen, Y.-M. Hua, S.-H. Zhang, G.-M. Tian, Transformation of heavy metal forms during sewage sludge bioleaching, J. Hazard. Mater., 123 (2005) 196–202.
  38. L. Xiang, L.C. Chan, J.W.C. Wong, Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria, Chemosphere, 41 (2000) 283–287.
  39. M. Ye, J. Liang, X. Liao, L. Li, X. Feng, W. Qian, S. Zhou, S. Sun, Bioleaching for detoxification of waste flotation tailings: relationship between EPS substances and bioleaching behavior, J. Environ. Manage., 279 (2021) 111795, doi: 10.1016/j.jenvman.2020.111795.
  40. J. Zheng, C. Qiu, C. Wang, J. Zhao, D. Wang, N. Liu, S. Wang, J. Yu, L. Sun, Influence of thermal hydrolysis treatment on chemical speciation and bioleaching behavior of heavy metals in the sewage sludge, Water Sci. Technol., 83 (2020) 372–380.
  41. J. Huang, J. Liang, X. Yang, J. Zhou, X. Liao, S. Li, L. Zheng, S. Sun, Ultrasonic coupled bioleaching pretreatment for enhancing sewage sludge dewatering: simultaneously mitigating antibiotic resistant genes and changing microbial communities, Ecotoxicol. Environ. Saf., 193 (2020) 110349, doi: 10.1016/j.ecoenv.2020.110349.
  42. G. Zheng, Y. Lu, D. Wang, L. Zhou, Importance of sludge conditioning in attenuating antibiotic resistance: removal of antibiotic resistance genes by bioleaching and chemical conditioning with Fe[III]/CaO, Water Res., 152 (2019) 61–73.
  43. Q. Yu, H. Lei, G. Yu, X. Feng, Z. Li, Z. Wu, Influence of microwave irradiation on sludge dewaterability, Chem. Eng. J., 155 (2009) 88–93.
  44. Y. Dai, S. Huang, J. Liang, S. Zhang, S. Sun, B. Tang, Q. Xu, Role of organic compounds from different EPS fractions and their effect on sludge dewaterability by combining anaerobically mesophilic digestion pre-treatment and Fenton’s reagent/lime, Chem. Eng. J., 321 (2017) 123–138.