References

  1. S. Banuraman, T.P. Meikandaan, Treatability study of tannery effluent by enhanced primary treatment, Engineering (Semantic Scholar), 3 (2013) 119–122.
  2. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  3. M.S. Bhatti, A.S. Reddy, R.K. Kalia, A.K. Thukral, Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium, Desalination, 269 (2011) 157–162.
  4. A. Deghles, U. Kurt, Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process, Chem. Eng. Process. Process Intensif., 104 (2016) 43–50.
  5. I. Ilou, S. Souabi, K. Digua, Quantification of pollution discharges from tannery wastewater and pollution reduction by pre-treatment station, Int. J. Sci. Res., 3 (2014) 1706–1715.
  6. C.A. Igwegbe, O.D. Onukwuli, J.O. Ighalo, C.J. Umembamalu, The process partially fitted to the theory of flocculation proposed by von Smoluchowski, Chem. Eng. J. Adv., (2021) 100107, doi: 10.1016/j.ceja.2021.100107.
  7. J.-w. Feng, Y.-b. Sun, Z. Zheng, J.-b. Zhang, S. Li, Y.-c. Tian, Treatment of tannery wastewater by electrocoagulation, J. Environ. Sci., 19 (2007) 1409–1415.
  8. S.S. Hamdan, M.H. El-Naas, Characterization of the removal of chromium(VI) from groundwater by electrocoagulation, J. Ind. Eng. Chem., 20 (2014) 2775–2781.
  9. L. Szpyrkowicz, S.N. Kaul, R.N. Neti, S. Satyanarayan, Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater, Water Res., 39 (2005) 1601–1613.
  10. M. Dehghani, S. Seresht, H. Hashemi, Treatment of hospital wastewater by electrocoagulation using aluminum and iron electrodes, Int. J. Environ. Health Eng., 3 (2014) 15, doi: 10.4103/2277-9183.132687.
  11. H. Zheng, G. Zhu, S. Jiang, T. Tshukudu, X. Xiang, P. Zhang, Q. He, Investigations of coagulation-flocculation process by performance optimization, model prediction and fractal structure of flocs, Desalination, 269 (2011) 148–156.
  12. V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, Recent applications of electrocoagulation in treatment of water and wastewater—a review, Green Sustainable Chem., 3 (2013) 89–121.
  13. E.Ü. Deveci, C. Akarsu, Ç. Gönen, Y. Özay, Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective, Process Biochem., 84 (2019) 124–133.
  14. L.S. Thakur, P. Mondal, Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation, J. Environ. Manage., 190 (2017) 102–112.
  15. S. Vasudevan, J. Lakshmi, G. Sozhan, Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water, J. Hazard. Mater., 192 (2011) 26–34.
  16. S. Aoudj, A. Khelifa, N. Drouiche, R. Belkada, D. Miroud, Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: application of a hybrid Fe-Al anode, Chem. Eng. J., 267 (2015) 153–162.
  17. S. Elabbas, N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M.N. Pons, F. Lapicque, J.P. Leclerc, Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode, J. Hazard. Mater., 319 (2016) 69–77.
  18. N. Galvão, J.B. de Souza, C.M. de Sousa Vidal, Landfill leachate treatment by electrocoagulation: effects of current density and electrolysis time, J. Environ. Chem. Eng., 8 (2020) 104368, doi: 10.1016/j.jece.2020.104368.
  19. Y.A. El-Taweel, E.M. Nassef, I. Elkheriany, D. Sayed, Removal of Cr(VI) ions from waste water by electrocoagulation using iron electrode, Egypt. J. Pet., 24 (2015) 183–192.
  20. A.N. Ghanim, Optimization of Pollutants Removal from Textile Wastewater by Electrocoagulation Through RSM, J. Babylon Univ., 2014.
  21. A.D. Villalobos-Lara, F. Álvarez, Z. Gamiño-Arroyo, R. Navarro, J.M. Peralta-Hernández, R. Fuentes, T. Pérez, Electrocoagulation treatment of industrial tannery wastewater employing a modified rotating cylinder electrode reactor, Chemosphere, 264 (2021) 128491, doi: 10.1016/j.chemosphere.2020.128491.
  22. A.I. Khuri, S. Mukhopadhyay, Response surface methodology, WIREs Comput. Stat., 2 (2010) 128–149.
  23. Y. Ait Ouaissa, M. Chabani, A. Amrane, A. Bensmaili, Integration of electro coagulation and adsorption for the treatment of tannery wastewater – the case of an Algerian factory, Rouiba, Procedia Eng., 33 (2012) 98–101.
  24. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  25. J. Lu, Z. Wang, X. Ma, Q. Tang, Y. Li, Modeling of the electrocoagulation process: a study on the mass transfer of electrolysis and hydrolysis products, Chem. Eng. Sci., 165 (2017) 165–176.
  26. C. Lalanne, R Companion to Montgomery’s Design and Analysis of Experiments, Cpdee. Ufmg. Br., 2005. Available at: http://scholar.google.com/scholar?hl=en&btnG =Search&q=intitle:R+Companion+to+Montgomery’s+Design +and+Analysis+of+Experiments#0
  27. M. Zakaria, M. Al-Shebany, S. Sarhan, Artificial neural network: a brief overview, Int. J. Eng. Res. Appl., 4 (2014) 7–12.
  28. Z. He, X-t. Zhang, G.-q. Xie, Product Quality Improvement Through Response Surface Methodology: A Case Study, Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management, 2013, pp. 120–130.