References

  1. X. Wu, G.Y. Chen, G. Owens, D. Chu, H. Xu, Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy, Mater. Today Energy, 12 (2019) 277–296.
  2. L.M. Fraas, L.D. Partain, Solar Cells and Their Applications, 2nd ed., John Wiley & Sons, Hoboken (New Jersey), 2010.
  3. Solar Reviews, Types of Solar Panels: Which One is the Best Choice?. Available at https://www.solarreviews.com/blog/ pros-and-cons-of-monocrystalline-vs-polycrystalline-solarpanels (Accessed September 20, 2020).
  4. V. Jafari Fesharaki, M. Dehghani, J. Jafari Fesharaki, The Effect of Temperature on Photovoltaic Cell Efficiency, Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation – ETEC Tehran, Tehran, Iran, 20–21 November 2011.
  5. M.D.S. Borkar, D.S.V. Prayagi, M.J. Gotmare, Performance evaluation of photovoltaic solar panel using thermoelectric cooling, Int. J. Eng. Res., 3 (2014) 536–539.
  6. B. Fontenault, Active Forced Convection Photovoltaic/Thermal Panel Efficiency Optimization Analysis, Mechanical Engineering Master’s Project, Rensselaer at Hartford, 2012.
  7. A.I.A. AL-Musawi, A. Taheri, A. Farzanehnia, M. Sardarabadi, M. Passandideh-Fard, Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems, J. Therm. Anal. Calorim., 137 (2019) 623–636.
  8. D.T. Cotfas, P.A. Cotfas, Multiconcept methods to enhance photovoltaic system efficiency, Int. J. Photoenergy, 2019 (2019) 1905041, doi: 10.1155/2019/1905041.
  9. A. Gaur, G.N. Tiwari, Performance of photovoltaic modules of different solar cells, J. Sol. Energy, 2013 (2013) 1–13, doi: 10.1155/2013/734581.
  10. V.S. Hudişteanu, N.C. Cherecheş, M. Verdeş, V. Ciocan, C.G. Popovici, F E ţurcanu, M.C. Balan, Analysis of an innovative water-cooling solution for photovoltaic-thermal systems, IOP Conf. Ser.: Earth Environ. Sci., The 7th Conference of the Sustainable Solutions for Energy and Environment 21–24 October 2020, Bucharest, Romania, 664 (2021) 012025, doi: 10.1088/1755-1315/664/1/012025.
  11. S. Krauter, Increased electrical yield via water flow over the front of photovoltaic panels, Sol. Energy Mater. Sol. Cells, 82 (2004) 131–137.
  12. M.J. Huang, P.C. Eames, B. Norton, N.J. Hewitt, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics, Sol. Energy Mater. Sol. Cells, 95 (2011) 1598–1603.
  13. A. Hasan, S.J. McCormack, M.J. Huang, J. Sarwar, B. Norton, Increased photovoltaic performance through temperature regulation by phase change materials: materials comparison in different climates, Sol. Energy, 115 (2015) 264–276.
  14. A.A.T. Alkhalidi, M.K. Khawaja, A.G. Al Kelany, Investigation of repurposed material utilization for environmental protection and reduction of overheat power losses in PV panels, Int. J. Photoenergy, 2019 (2019) 1–9, doi: 10.1155/2019/2181967.
  15. Z.A. Haidar, J. Orfi, Z. Kaneesamkandi, Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency, Results Phys., 11 (2018) 690–697.
  16. L. Mei, D. Infield, U. Eicker, V. Fux, Thermal modelling of a building with an integrated ventilated PV façade, Energy Build., 35 (2003) 605–617.
  17. D. Sato, N. Yamada, Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method, Renewable Sustainable Energy Rev., 104 (2019) 151–166.
  18. J.K. Tonui, Y. Tripanagnostopoulos, Improved PV/T solar collectors with heat extraction by forced or natural air circulation, Renewable Energy, 32 (2007) 623–637.
  19. E. Cuce, T. Bali, S.A. Sekucoglu, Effects of passive cooling on performance of silicon photovoltaic cells, Int. J. Low-Carbon Technol., 6 (2011) 299–308.
  20. R. Mazón-Hernández, J.R. García-Cascales, F. Vera-García, A.S. Káiser, B. Zamora, Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream, Int. J. Photoenergy, 2013 (2013) 830968, doi: 10.1155/ 2013/830968.
  21. N. Parkunam, L. Pandiyan, G. Navaneethakrishnan, S. Arul, V. Vijayan, Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure, Energy Sources Part A, 42 (2020) 653–663.
  22. M. Firoozzadeh, A.H. Shiravi, M. Shafiee, An experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment, Iran. J. Energy Environ., 10 (2019) 80–84.
  23. S. Hudisteanu, T.-D. Mateescu, N.-C. Chereches, C.-G. Popovici, Numerical study of air cooling photovoltaic panels using heat sinks, Romanian J. Civ. Eng., 6 (2015) 11–21.
  24. C.G. Popovici, S.V. Hudişteanu, T.D. Mateescu, N.-C. Cherecheş, Efficiency improvement of photovoltaic panels by using air cooled heat sinks, Energy Procedia, 85 (2016) 425–432.
  25. K. Egab, A. Okab, H.S. Dywan, S.K. Oudah, Enhancing a solar panel cooling system using an air heat sink with different fin configurations, IOP Conf. Ser.: Mater. Sci. Eng., 671 (2020) 012133, doi: 10.1088/1757-899X/671/1/012133.
  26. S. Armstrong, W.G. Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions, Appl. Therm. Eng., 30 (2010) 1488–1495.
  27. ANSYS, ANSYS Fluent Users Guide, 2013.
  28. Z. Arifin, D.D.D.P. Tjahjana, S. Hadi, R.A. Rachmanto, G. Setyohandoko, B. Sutanto, Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks, Int. J. Photoenergy, 2020 (2020) 1574274, doi: 10.1155/2020/1574274.