References
- X. Wu, G.Y. Chen, G. Owens, D. Chu, H. Xu, Photothermal
materials: a key platform enabling highly efficient water
evaporation driven by solar energy, Mater. Today Energy,
12 (2019) 277–296.
- L.M. Fraas, L.D. Partain, Solar Cells and Their Applications, 2nd
ed., John Wiley & Sons, Hoboken (New Jersey), 2010.
- Solar Reviews, Types of Solar Panels: Which One is the Best
Choice?. Available at https://www.solarreviews.com/blog/
pros-and-cons-of-monocrystalline-vs-polycrystalline-solarpanels
(Accessed September 20, 2020).
- V. Jafari Fesharaki, M. Dehghani, J. Jafari Fesharaki, The Effect
of Temperature on Photovoltaic Cell Efficiency, Proceedings of
the 1st International Conference on Emerging Trends in Energy
Conservation – ETEC Tehran, Tehran, Iran, 20–21 November
2011.
- M.D.S. Borkar, D.S.V. Prayagi, M.J. Gotmare, Performance
evaluation of photovoltaic solar panel using thermoelectric
cooling, Int. J. Eng. Res., 3 (2014) 536–539.
- B. Fontenault, Active Forced Convection Photovoltaic/Thermal Panel Efficiency Optimization Analysis, Mechanical
Engineering Master’s Project, Rensselaer at Hartford, 2012.
- A.I.A. AL-Musawi, A. Taheri, A. Farzanehnia, M. Sardarabadi,
M. Passandideh-Fard, Numerical study of the effects of
nanofluids and phase-change materials in photovoltaic thermal
(PVT) systems, J. Therm. Anal. Calorim., 137 (2019) 623–636.
- D.T. Cotfas, P.A. Cotfas, Multiconcept methods to enhance
photovoltaic system efficiency, Int. J. Photoenergy, 2019 (2019)
1905041, doi: 10.1155/2019/1905041.
- A. Gaur, G.N. Tiwari, Performance of photovoltaic modules
of different solar cells, J. Sol. Energy, 2013 (2013) 1–13, doi:
10.1155/2013/734581.
- V.S. Hudişteanu, N.C. Cherecheş, M. Verdeş, V. Ciocan, C.G.
Popovici, F E ţurcanu, M.C. Balan, Analysis of an innovative
water-cooling solution for photovoltaic-thermal systems,
IOP Conf. Ser.: Earth Environ. Sci., The 7th Conference of
the Sustainable Solutions for Energy and Environment
21–24 October 2020, Bucharest, Romania, 664 (2021) 012025,
doi: 10.1088/1755-1315/664/1/012025.
- S. Krauter, Increased electrical yield via water flow over the
front of photovoltaic panels, Sol. Energy Mater. Sol. Cells,
82 (2004) 131–137.
- M.J. Huang, P.C. Eames, B. Norton, N.J. Hewitt, Natural
convection in an internally finned phase change material heat
sink for the thermal management of photovoltaics, Sol. Energy
Mater. Sol. Cells, 95 (2011) 1598–1603.
- A. Hasan, S.J. McCormack, M.J. Huang, J. Sarwar, B. Norton,
Increased photovoltaic performance through temperature
regulation by phase change materials: materials comparison in
different climates, Sol. Energy, 115 (2015) 264–276.
- A.A.T. Alkhalidi, M.K. Khawaja, A.G. Al Kelany, Investigation
of repurposed material utilization for environmental protection
and reduction of overheat power losses in PV panels, Int. J.
Photoenergy, 2019 (2019) 1–9, doi: 10.1155/2019/2181967.
- Z.A. Haidar, J. Orfi, Z. Kaneesamkandi, Experimental investigation
of evaporative cooling for enhancing photovoltaic panels
efficiency, Results Phys., 11 (2018) 690–697.
- L. Mei, D. Infield, U. Eicker, V. Fux, Thermal modelling of
a building with an integrated ventilated PV façade, Energy
Build., 35 (2003) 605–617.
- D. Sato, N. Yamada, Review of photovoltaic module cooling
methods and performance evaluation of the radiative cooling
method, Renewable Sustainable Energy Rev., 104 (2019)
151–166.
- J.K. Tonui, Y. Tripanagnostopoulos, Improved PV/T solar
collectors with heat extraction by forced or natural air
circulation, Renewable Energy, 32 (2007) 623–637.
- E. Cuce, T. Bali, S.A. Sekucoglu, Effects of passive cooling on
performance of silicon photovoltaic cells, Int. J. Low-Carbon
Technol., 6 (2011) 299–308.
- R. Mazón-Hernández, J.R. García-Cascales, F. Vera-García,
A.S. Káiser, B. Zamora, Improving the electrical parameters
of a photovoltaic panel by means of an induced or forced air
stream, Int. J. Photoenergy, 2013 (2013) 830968, doi: 10.1155/
2013/830968.
- N. Parkunam, L. Pandiyan, G. Navaneethakrishnan, S. Arul,
V. Vijayan, Experimental analysis on passive cooling of flat
photovoltaic panel with heat sink and wick structure, Energy
Sources Part A, 42 (2020) 653–663.
- M. Firoozzadeh, A.H. Shiravi, M. Shafiee, An experimental
study on cooling the photovoltaic modules by fins to improve
power generation: economic assessment, Iran. J. Energy
Environ., 10 (2019) 80–84.
- S. Hudisteanu, T.-D. Mateescu, N.-C. Chereches, C.-G. Popovici,
Numerical study of air cooling photovoltaic panels using heat
sinks, Romanian J. Civ. Eng., 6 (2015) 11–21.
- C.G. Popovici, S.V. Hudişteanu, T.D. Mateescu, N.-C. Cherecheş,
Efficiency improvement of photovoltaic panels by using air
cooled heat sinks, Energy Procedia, 85 (2016) 425–432.
- K. Egab, A. Okab, H.S. Dywan, S.K. Oudah, Enhancing a solar
panel cooling system using an air heat sink with different fin
configurations, IOP Conf. Ser.: Mater. Sci. Eng., 671 (2020)
012133, doi: 10.1088/1757-899X/671/1/012133.
- S. Armstrong, W.G. Hurley, A thermal model for photovoltaic
panels under varying atmospheric conditions, Appl. Therm.
Eng., 30 (2010) 1488–1495.
- ANSYS, ANSYS Fluent Users Guide, 2013.
- Z. Arifin, D.D.D.P. Tjahjana, S. Hadi, R.A. Rachmanto,
G. Setyohandoko, B. Sutanto, Numerical and experimental
investigation of air cooling for photovoltaic panels using
aluminum heat sinks, Int. J. Photoenergy, 2020 (2020) 1574274,
doi: 10.1155/2020/1574274.