References

  1. S. Marimuthu, D. Chinnathambi, Computational analysis to enhance the compressible flow over an aerofoil surface, Aircr. Eng. Aerosp. Technol., 93 (2021) 925–934.
  2. Z. Xia, Z. Xiao, Y. Shi, S. Chen, Mach number effect of compressible flow around a circular cylinder, AIAA J., 54 (2009) 2004, doi: 10.2514/1.J054420.
  3. M. Harper-Bourne, The jet noise of a convergent-divergent nozzle, Session: Jet Aeroacoust. I: Exp. Jet Noise, (2022), doi: 10.2514/6.2022-2827.
  4. L. Zhou, Y.B. Meng, Z.X. Wang, Numerical study on flow characteristics of serpentine convergent-divergent nozzle, Tuijin Jishu/J. Propuls. Technol., 42 (2021) 103–113.
  5. D. Modesti, S. Pirozzoli, F. Grasso, Direct numerical simulation of developed compressible flow in square ducts, Int. J. Heat Fluid Flow, 76 (2019) 130–140.
  6. Ekanayake, E.M. Sudharshani, Numerical Simulation of a Convergent Divergent Supersonic Nozzle Flow, Dissertation Submitted in Fulfilment of the Requirements for the Master of Science (Applied Mathematics), 2013.
  7. S.A. Khan, O.M. Ibrahim, A. Aabid, CFD analysis of compressible flows in a convergent-divergent nozzle, Mater. Today:. Proc., 46 (2021) 2835–2842.
  8. V. Zapryagaev, N. Kiselev, D. Gubanov, Shock-wave structure of supersonic jet flows, Aerospace, 5 (2018) 60, doi: 10.3390/aerospace5020060.
  9. I. Sadrehaghighi, Case Studies Involving Numerical Shock Wave/Boundary Layer Interactions (SWBLI), Independent CFD Researcher, 2022, doi: 10.13140/RG.2.2.26155.92961.
  10. A. Nebbache, Separated Nozzle Flow, CR MECANIQUE, 2018.
  11. B. Simon, Design and Optimization of Aircraft Engine Nozzles in Under-Wing Configuration, General Mathematics, HAL Open Science, 2020.
  12. Q. Xiao, H.M. Tsai, D. Papamoschou, A. Johnson, Experimental and numerical study of jet mixing from a shock-containing nozzle, J. Propul. Power, 25 (2009) 688, doi: 10.2514/1.37022.