References

  1. H.A. Barnes, K. Walters, The yield stress myth?, Rheol. Acta, 24 (1985) 323–326.
  2. H.A. Barnes, The yield stress—a review or ‘παντα ρει’— everything flows?, J. Non-Newtonian Fluid Mech., 81 (1999) 133–178.
  3. G. Astarita, Letter to the editor: the engineering reality of the yield stress, J. Rheol., 34 (1990) 275, doi: 10.1122/1.550142.
  4. J.P. Hartnett, R.Y.Z. Hu, Technical note: the yield stress—an engineering reality, J. Rheol., 33 (1989) 671–679.
  5. I.D. Evans, Letter to the editor: on the nature of the yield stress, J. Rheol., 36 (1992) 1313–1321.
  6. Q.D. Nguyen, D.V. Boger, Measuring the flow properties of yield stress fluids, Annu. Rev. Fluid Mech., 24 (1992) 47–88.
  7. P.C.F. Møller, J. Mewis, D. Bonn, Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice, Soft Matter, 2 (2006) 274–283.
  8. P.C.F. Møller, A. Fall, D. Bonn, Origin of apparent viscosity in yield stress fluids below yielding, Europhys. Lett., 87 (2009) 38004, doi: 10.1209/0295-5075/87/38004.
  9. N.J. Balmforth, I.A. Frigaard, G. Ovarlez, Yielding to stress: recent developments in viscoplastic fluid mechanics, Annu. Rev. Fluid Mech., 46 (2014) 121–146.
  10. J.O. Carnali, M.S. Naser, The use of dilute solution viscometry to characterize the network properties of Carbopol microgels, Colloid. Polym. Sci., 270 (1992) 183–193.
  11. E.M. Ahmed, Hydrogel: preparation, characterization, and applications: a review, J. Adv. Res., 6 (2015) 105–121.
  12. A.M.V. Putz, T.I. Burghelea, The solid–fluid transition in a yield stress shear thinning physical gel, Rheol. Acta, 48 (2009) 673–689.
  13. J.M. Piau, Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges: meso- and macroscopic properties, constitutive equations and scaling laws, J. Non-Newtonian Fluid Mech., 144 (2007) 1–29.
  14. J.-Y. Kim, J.-Y. Song, E.-J. Lee, S.-K. Park, Rheological properties and microstructures of Carbopol gel network system, Colloid. Polym. Sci., 281 (2003) 614–623.
  15. B.W. Barry, M.C. Meyer, The rheological properties of Carbopol gels I. Continuous shear and creep properties of Carbopol gels, Int. J. Pharm., 2 (1979) 1–25.
  16. M.T. Islam, N. Rodríguez-Hornedo, S. Ciotti, C. Ackermann, Rheological characterization of topical carbomer gels neutralized to different pH, Pharm. Res., 21 (2004) 1192–1199.
  17. E. Di Giuseppe, F. Corbi, F. Funiciello, A. Massmeyer, T.N. Santimano, M. Rosenau, A. Davaille, Characterization of Carbopol® hydrogel rheology for experimental tectonics and geodynamics, Tectonophysics, 642 (2015) 29–45.
  18. P. Moller, A. Fall, V. Chikkadi, D. Derks, D. Bonn, An attempt to categorize yield stress fluid behaviour, Philos. Trans. R. Soc. London, Ser. A, 367 (2009) 5139–5155.
  19. P. Coussot, L. Tocquer, C. Lanos, G. Ovarlez, Macroscopic vs. local rheology of yield stress fluids, J. Non-Newtonian Fluid Mech., 158 (2009) 85–90.
  20. R.J. Ketz Jr., R.K. Prud’homme, W.W. Graessley, Rheology of concentrated microgel solutions, Rheol. Acta, 27 (1988) 531–539.
  21. M.K.N. Ambuter, Polymeric Stabilizers for Liquid Detergents, K.-Y. Lai, Ed., Liquid Detergents, 2nd ed., CRC Press, Piscataway, New Jersey, U.S.A., 2005.
  22. J. Ricka, T. Tanaka, Swelling of ionic gels: quantitative performance of the Donnan theory, Macromolecules, 17 (1984) 2916–2921.
  23. T. Burghelea, Transport Phenomena in Viscoplastic Materials, V.B. Teodor Burghelea, Ed., Transport Phenomena in Complex Fluids, Springer, Cham, 2019, pp. 167–258.
  24. T. Divoux, D. Tamarii, C. Barentin, S. Manneville, Transient shear banding in a simple yield stress fluid, Phys. Rev. Lett., 104 (2010) 208301, doi: 10.1103/PhysRevLett.104.208301.
  25. T. Burghelea, M. Moyers-Gonzalez, R. Sainudiin, A non-linear dynamical system approach for the yielding behaviour of a viscoplastic material, Soft Matter, 13 (2017) 2024–2039.
  26. E. Weber, M. Moyers-González, T.I. Burghelea, Thermorheological properties of a Carbopol gel under shear, J. Non-Newtonian Fluid Mech., 183 (2012) 14–24.
  27. M. Moyers-Gonzalez, T.I. Burghelea, J. Mak, Linear stability analysis for plane-Poiseuille flow of an elastoviscoplastic fluid with internal microstructure for large Reynolds numbers., J. Non-Newtonian Fluid Mech., 166 (2011) 515–531.
  28. E. Younes, V. Bertola, C. Castelain, T. Burghelea, Slippery flows of a Carbopol gel in a microchannel, Phys. Rev. Fluids, 5 (2020) 083303, doi: 10.1103/PhysRevFluids.5.083303.
  29. W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi- Benzollösungen, Kolloid-Zeitschrift, 39 (1926) 291–300.
  30. T.C. Papanastasiou, A.G. Boudouvis, Flows of viscoplastic materials: models and computations, Comput. Struct., 64 (1997) 677–694.
  31. P.R.S. Mendes, E.S.S. Dutra, Viscosity function for yield-stress liquids, Appl. Rheol., 14 (2004) 296–302.
  32. E. Mitsoulis, S.S. Abdali, N.C. Markatos, Flow simulation of Herschel–Bulkley fluids through extrusion dies, Can. J. Chem. Eng., 71 (1993) 147–160.
  33. F.K. Oppong, J.R. de Bruyn, Mircorheology and jamming in a yield-stress fluid, Rheol. Acta, 50 (2011) 317–326.