References
- H.A. Barnes, K. Walters, The yield stress myth?, Rheol. Acta,
24 (1985) 323–326.
- H.A. Barnes, The yield stress—a review or ‘παντα ρει’—
everything flows?, J. Non-Newtonian Fluid Mech., 81 (1999)
133–178.
- G. Astarita, Letter to the editor: the engineering reality of the
yield stress, J. Rheol., 34 (1990) 275, doi: 10.1122/1.550142.
- J.P. Hartnett, R.Y.Z. Hu, Technical note: the yield stress—an
engineering reality, J. Rheol., 33 (1989) 671–679.
- I.D. Evans, Letter to the editor: on the nature of the yield stress,
J. Rheol., 36 (1992) 1313–1321.
- Q.D. Nguyen, D.V. Boger, Measuring the flow properties of
yield stress fluids, Annu. Rev. Fluid Mech., 24 (1992) 47–88.
- P.C.F. Møller, J. Mewis, D. Bonn, Yield stress and thixotropy:
on the difficulty of measuring yield stresses in practice, Soft
Matter, 2 (2006) 274–283.
- P.C.F. Møller, A. Fall, D. Bonn, Origin of apparent viscosity in
yield stress fluids below yielding, Europhys. Lett., 87 (2009)
38004, doi: 10.1209/0295-5075/87/38004.
- N.J. Balmforth, I.A. Frigaard, G. Ovarlez, Yielding to stress:
recent developments in viscoplastic fluid mechanics,
Annu. Rev. Fluid Mech., 46 (2014) 121–146.
- J.O. Carnali, M.S. Naser, The use of dilute solution viscometry
to characterize the network properties of Carbopol microgels,
Colloid. Polym. Sci., 270 (1992) 183–193.
- E.M. Ahmed, Hydrogel: preparation, characterization, and
applications: a review, J. Adv. Res., 6 (2015) 105–121.
- A.M.V. Putz, T.I. Burghelea, The solid–fluid transition in a
yield stress shear thinning physical gel, Rheol. Acta, 48 (2009)
673–689.
- J.M. Piau, Carbopol gels: elastoviscoplastic and slippery
glasses made of individual swollen sponges: meso- and
macroscopic properties, constitutive equations and scaling
laws, J. Non-Newtonian Fluid Mech., 144 (2007) 1–29.
- J.-Y. Kim, J.-Y. Song, E.-J. Lee, S.-K. Park, Rheological properties
and microstructures of Carbopol gel network system,
Colloid. Polym. Sci., 281 (2003) 614–623.
- B.W. Barry, M.C. Meyer, The rheological properties of Carbopol
gels I. Continuous shear and creep properties of Carbopol gels,
Int. J. Pharm., 2 (1979) 1–25.
- M.T. Islam, N. Rodríguez-Hornedo, S. Ciotti, C. Ackermann,
Rheological characterization of topical carbomer gels
neutralized to different pH, Pharm. Res., 21 (2004) 1192–1199.
- E. Di Giuseppe, F. Corbi, F. Funiciello, A. Massmeyer,
T.N. Santimano, M. Rosenau, A. Davaille, Characterization of
Carbopol® hydrogel rheology for experimental tectonics and
geodynamics, Tectonophysics, 642 (2015) 29–45.
- P. Moller, A. Fall, V. Chikkadi, D. Derks, D. Bonn, An attempt
to categorize yield stress fluid behaviour, Philos. Trans. R. Soc.
London, Ser. A, 367 (2009) 5139–5155.
- P. Coussot, L. Tocquer, C. Lanos, G. Ovarlez, Macroscopic vs.
local rheology of yield stress fluids, J. Non-Newtonian Fluid
Mech., 158 (2009) 85–90.
- R.J. Ketz Jr., R.K. Prud’homme, W.W. Graessley, Rheology of
concentrated microgel solutions, Rheol. Acta, 27 (1988) 531–539.
- M.K.N. Ambuter, Polymeric Stabilizers for Liquid Detergents,
K.-Y. Lai, Ed., Liquid Detergents, 2nd ed., CRC Press, Piscataway,
New Jersey, U.S.A., 2005.
- J. Ricka, T. Tanaka, Swelling of ionic gels: quantitative
performance of the Donnan theory, Macromolecules, 17 (1984)
2916–2921.
- T. Burghelea, Transport Phenomena in Viscoplastic Materials,
V.B. Teodor Burghelea, Ed., Transport Phenomena in Complex
Fluids, Springer, Cham, 2019, pp. 167–258.
- T. Divoux, D. Tamarii, C. Barentin, S. Manneville, Transient
shear banding in a simple yield stress fluid, Phys. Rev. Lett.,
104 (2010) 208301, doi: 10.1103/PhysRevLett.104.208301.
- T. Burghelea, M. Moyers-Gonzalez, R. Sainudiin, A non-linear
dynamical system approach for the yielding behaviour of a
viscoplastic material, Soft Matter, 13 (2017) 2024–2039.
- E. Weber, M. Moyers-González, T.I. Burghelea,
Thermorheological properties of a Carbopol gel under shear,
J. Non-Newtonian Fluid Mech., 183 (2012) 14–24.
- M. Moyers-Gonzalez, T.I. Burghelea, J. Mak, Linear stability
analysis for plane-Poiseuille flow of an elastoviscoplastic fluid
with internal microstructure for large Reynolds numbers.,
J. Non-Newtonian Fluid Mech., 166 (2011) 515–531.
- E. Younes, V. Bertola, C. Castelain, T. Burghelea, Slippery
flows of a Carbopol gel in a microchannel, Phys. Rev. Fluids,
5 (2020) 083303, doi: 10.1103/PhysRevFluids.5.083303.
- W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-
Benzollösungen, Kolloid-Zeitschrift, 39 (1926) 291–300.
- T.C. Papanastasiou, A.G. Boudouvis, Flows of viscoplastic
materials: models and computations, Comput. Struct., 64 (1997)
677–694.
- P.R.S. Mendes, E.S.S. Dutra, Viscosity function for yield-stress
liquids, Appl. Rheol., 14 (2004) 296–302.
- E. Mitsoulis, S.S. Abdali, N.C. Markatos, Flow simulation of
Herschel–Bulkley fluids through extrusion dies, Can. J. Chem.
Eng., 71 (1993) 147–160.
- F.K. Oppong, J.R. de Bruyn, Mircorheology and jamming in a
yield-stress fluid, Rheol. Acta, 50 (2011) 317–326.