References

  1. T. Madrakian, A. Afkhami, M. Mohammadnejad, Application of organized media for rapid spectrofluorimetric determination of trace amounts of Cr(VI) in the presence of Cr(III), Bull. Korean Chem. Soc., 30 (2009) 1252–1256.
  2. M.K. Jamali, T.G. Kazi, M.B. Arain, H.I. Afridi, N. Jalbani, A.R. Memon, Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion, J. Agron. Crop Sci., 193 (2007) 218–228.
  3. M. Pouzar, M. Průšová, P. Prokopčáková, T. Černohorský, J. Wiener, A. Krejčová, LIBS analysis of chromium in samples of dyed wool fabric, J. Anal. At. Spectrom., 24 (2009) 685–688.
  4. K. Salnikow, A. Zhitkovich, Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic and chromium, Chem. Res. Toxicol., 21 (2008) 28–44.
  5. D.T. Gjerde, D.R. Wiederin, F.G. Smith, B.M. Mattson, Metal speciation by means of microbore columns with directinjection nebulization by inductively coupled plasma atomic emission spectroscopy, J. Chromatogr. A, 640 (1993) 73–78.
  6. R. Escobar, Q. Lin, A. Guiraúm, F.F. de la Rosa, Flow injection chemiluminescence method for the selective determination of chromium(III), Analyst, 118 (1993) 643–647.
  7. T. Madrakian, A.H. Mohammadzadeh, S. Maleki, A. Afkhami, Preparation of polyacrylonitrile nanofibers decorated by N-doped carbon quantum dots: application as a fluorescence probe for determination of Cr(VI), New J. Chem., 42 (2018) 18765–18772.
  8. W. Ahmad, A.S. Bashammakh, A.A. Al-Sibaai, H. Alwael, M.S. El-Shahawi, Trace determination of Cr3+ and Cr6+ species in water samples via disp. liquid–liquid microextraction and microvolume UV–Vis spectr. therm., speciation study, J. Mol. Liq., 224 (2016) 1242–1248.
  9. Z. Zhang, D. Liba, L. Alvarado, A. Chen, Separation and recovery of Cr(III) and Cr(VI) using electrodeionization as an efficient approach, Sep. Purif. Technol., 137 (2014) 86–93.
  10. L. Leita, A. Margon, A. Pastrello, I. Arčon, M. Contin, D. Mosetti, Soil humic acids may favour the persistence of hexavalent chromium in soil, Environ. Pollut., 157 (2009) 1862–1866.
  11. L. Xia, E. Akiyama, G. Frankel, R. McCreery, Storage and release of soluble hexavalent chromium from chromate conversion coatings equilibrium aspects of CrVI concentration, J. Electrochem. Soc., 147 (2000) 2556, doi: 10.1149/1.1393568.
  12. K. Chen, L. Bocknek, B. Manning, Oxidation of Cr(III) to Cr(VI) and production of Mn(II) by synthetic manganese(IV) oxide, Crystals, 11 (2021) 443, doi: 10.3390/cryst11040443.
  13. R. Jin, Y. Liu, G. Liu, T. Tian, S. Qiao, J. Zhou, Characterization of product and potential mechanism of Cr(VI) reduction by anaerobic activated sludge in a sequencing batch reactor, Sci. Rep., 7 (2017) 1681, doi: 10.1038/s41598-017-01885-z.
  14. A.A. Wesam, B.T. Chiad, A.J.H. Al-Wattar, Q.M. Salman, Spectroscopic comparison of UV-VIS electronic transitions of Cr ions in solution, sol and Xerogel silica matrices, Nano Sci. Nano Technol.: An Indian J., 6 (2012) 90–96.
  15. Z.H. Yahia, H.N. Bayakly, M. Shafi, S. Painter, V. Taylor, J. Greene, K. Rosli, Interaction of malate and lactate with chromium(III) and iron(III) in aqueous solutions, Synth. React. Inorg. Metal-Org. Nano-Metal Chem., 7 (2005) 515–522.
  16. K. Zavitsanos, K. Tampouris, A.L. Petrou, Reaction of chromium(III) with 3,4-dihydroxybenzoic acid: kinetics and mechanism in weak acidic aqueous solutions, Bioinorg. Chem. Appl., 2008 (2008) 212461, doi: 10.1155/2008/212461.
  17. Z. Pei, J. Pei, H. Chen, L. Gao, S. Zhou, Hydrothermal synthesis of large sized Cr2O3 polyhedrons under free surfactant, Mater. Lett., 159 (2015) 357–361.
  18. S. Tian, X. Ye, Y. Dong, W. Li, B. Zhang, B. Li, H. Feng, Production and characterization of chromium oxide
    (Cr2O3) via a facile combination of electrooxidation and calcination, Int. J. Electrochem. Sci., 14 (2019) 8805–8818.
  19. S. Khamlich, E. Manikandan, B.D. Ngom, J. Sithole, O. Nemraoui, I. Zorkani, R. McCrindle, N. Cingo, M. Maaza,. Synthesis, characterization, and growth mechanism of α-Cr2O3 monodispersed particles, J. Phys. Chem. Solids, 72 (2011) 714–718.
  20. S.M. Abo-Naf, M.S. El-Amiry, A.A. Abdel-Khalek, FT-IR and UV–Vis optical absorption spectra of γ-irradiated calcium phosphate glasses doped with Cr2O3, V2O5 and Fe2O3, Opt. Mater., 30 (2008) 900–909.
  21. B.B. Kamble, M. Naikwade, K.M. Garadkar, R.B. Mane, K.K.K. Sharma, B.D. Ajalkar, S.N. Tayade, Ionic liquid assisted synthesis of chromium oxide (Cr2O3) nanoparticles and their application in glucose sensing, J. Mater. Sci.: Mater. Electron., 30 (2019) 13984–13993.
  22. M.A. Vuurman, I.E. Wachs, D.J. Stufkens, A. Oskam, Characterization of chromium oxide supported on Al2O3, ZrO2, TiO2, and SiO2 under dehydrated conditions, J. Mol. Catal., 80 (1993) 209–227.
  23. Rakesh, S. Ananda, N.M. Made Gowda, Synthesis of chromium(III) oxide nanoparticles by electrochemical method and Mukia Maderaspatana plant extract, characterization, KMnO4 decomposition and antibacterial study, Mod. Res. Catal., 2 (2013) 127–135.
  24. K.S. Budiasih, C. Anwar, S.J. Santosa, H. Ismail, Preparation and Infrared Spectroscopic Studies of Chromium(III) – Glutamic Acid Complexes, Antidiabetic Supplement Candidates, Proc. Int. Conf. Indonesian Chem. Soc., Malang, Indonesia, 2012.
  25. K.S. Budiasih, C. Anwar, S.J. Santosa, H. Ismail, Synthesis and characterization of chromium(III) complexes with L-glutamic acid, glycine and L-cysteine, Int. J. Biotechnol. Bioeng., 7 (2013) 458–462.
  26. T. Ivanova1, K. Gesheva, A. Cziraki, A. Szekeres, E. Vlaikova, Structural transformations and their relation to the optoelectronic properties of chromium oxide thin films, J. Phys.: Conf. Ser., Fifteenth International Summer School on Vacuum, Electron and Ion Technologies (VEIT 2007) 17–21 September 2007, Bulbank Hotel, Sozopol, Bulgaria, 113 (2008) 012030, doi: 10.1088/1742-6596/113/1/012030.
  27. P.M. Sousa, A.J. Silvestre, N. Popovici, M.L. Paramês, O. Conde, KrF Laser CVD of Chromium Oxide by Photodissociation of Cr(CO)6, Mater. Sci. Forum, 455–456 (2004) 20–24.
  28. G.H. Philip, D. Wayne, Catalytic activity, surface redox properties, and structural evolution during the thermal processing of chromium-promoted ceria oxidation catalysts, Chem. Mater., 13 (2001) 1708–1719.
  29. S. Mitchell, R. Waring, Aminophenols, Kirk-Othmer Encyclopedia of Chemical Technology, 2000, doi: 10.1002/0471238961.01 13091413092003.a01.
  30. S.A. Khan, S. Shahid, S. Hanif, H.S. Almoallim, S.A. Alharbi, H. Sellami, Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities, Int. J. Mol. Sci., 22 (2021) 502, doi: 10.3390/ijms22020502.
  31. T. Dahryn, T. Mahendra, B. Alice, N. Gopal, J. Snehasis, Impact of consciousness energy healing treatment on the physicochemical and thermal properties of chromium trioxide (CrO3), Pharm. Sci. Anal. Res. J., 2 (2019) 180016.
  32. K.S. Fathalla, H.A. El-Ghamry, M. Gaber, Ru(III) complexes of triazole based Schiff base and azo dye ligands: an insight into the molecular structure and catalytic role in oxidative dimerization of 2-aminophenol, Inorg. Chem. Commun., 129 (2021) 108616, doi: 10.1016/j.inoche.2021.108616.
  33. R. Elder, Final report on the safety assessment of p-aminophenol, m-aminophenol and o-aminophenol, Int. J. Toxicol., 7 (1988) 279–333.
  34. M. Terashima, A facile synthesis of 2-substituted benzoxazoles, Synthesis, 6 (1982) 484–485.
  35. O.A. Mehrez, F. Dossier-Berne, B. Legube, Oxidation of 2-aminophenol to 2-amino-3H-phenoxazin-3-one with monochloramine in aqueous environment: a new method for APO synthesis?, Chemosphere, 145 (2016) 464–469.
  36. A. Sahoo, S. Kumar, N. Dehury, S. Patra, A porous trimetallic Au@Pd@Ru nanoparticle system: synthesis, characterisation and efficient dye degradation and removal, J. Mater. Chem. A, 38 (2015) 19376–19383.