References
- T. Madrakian, A. Afkhami, M. Mohammadnejad, Application
of organized media for rapid spectrofluorimetric determination
of trace amounts of Cr(VI) in the presence of Cr(III),
Bull. Korean Chem. Soc., 30 (2009) 1252–1256.
- M.K. Jamali, T.G. Kazi, M.B. Arain, H.I. Afridi, N. Jalbani,
A.R. Memon, Heavy metal contents of vegetables grown in
soil, irrigated with mixtures of wastewater and sewage sludge
in Pakistan, using ultrasonic-assisted pseudo-digestion,
J. Agron. Crop Sci., 193 (2007) 218–228.
- M. Pouzar, M. Průšová, P. Prokopčáková, T. Černohorský,
J. Wiener, A. Krejčová, LIBS analysis of chromium in samples
of dyed wool fabric, J. Anal. At. Spectrom., 24 (2009) 685–688.
- K. Salnikow, A. Zhitkovich, Genetic and epigenetic mechanisms
in metal carcinogenesis and cocarcinogenesis: nickel, arsenic
and chromium, Chem. Res. Toxicol., 21 (2008) 28–44.
- D.T. Gjerde, D.R. Wiederin, F.G. Smith, B.M. Mattson, Metal
speciation by means of microbore columns with directinjection
nebulization by inductively coupled plasma atomic
emission spectroscopy, J. Chromatogr. A, 640 (1993) 73–78.
- R. Escobar, Q. Lin, A. Guiraúm, F.F. de la Rosa, Flow injection
chemiluminescence method for the selective determination of
chromium(III), Analyst, 118 (1993) 643–647.
- T. Madrakian, A.H. Mohammadzadeh, S. Maleki, A. Afkhami,
Preparation of polyacrylonitrile nanofibers decorated by N-doped
carbon quantum dots: application as a fluorescence probe for
determination of Cr(VI), New J. Chem., 42 (2018) 18765–18772.
- W. Ahmad, A.S. Bashammakh, A.A. Al-Sibaai, H. Alwael,
M.S. El-Shahawi, Trace determination of Cr3+ and Cr6+ species
in water samples via disp. liquid–liquid microextraction
and microvolume UV–Vis spectr. therm., speciation study,
J. Mol. Liq., 224 (2016) 1242–1248.
- Z. Zhang, D. Liba, L. Alvarado, A. Chen, Separation and
recovery of Cr(III) and Cr(VI) using electrodeionization as an
efficient approach, Sep. Purif. Technol., 137 (2014) 86–93.
- L. Leita, A. Margon, A. Pastrello, I. Arčon, M. Contin, D. Mosetti,
Soil humic acids may favour the persistence of hexavalent
chromium in soil, Environ. Pollut., 157 (2009) 1862–1866.
- L. Xia, E. Akiyama, G. Frankel, R. McCreery, Storage and
release of soluble hexavalent chromium from chromate
conversion coatings equilibrium aspects of CrVI concentration,
J. Electrochem. Soc., 147 (2000) 2556, doi: 10.1149/1.1393568.
- K. Chen, L. Bocknek, B. Manning, Oxidation of Cr(III) to Cr(VI)
and production of Mn(II) by synthetic manganese(IV) oxide,
Crystals, 11 (2021) 443, doi: 10.3390/cryst11040443.
- R. Jin, Y. Liu, G. Liu, T. Tian, S. Qiao, J. Zhou, Characterization
of product and potential mechanism of Cr(VI) reduction by
anaerobic activated sludge in a sequencing batch reactor,
Sci. Rep., 7 (2017) 1681, doi: 10.1038/s41598-017-01885-z.
- A.A. Wesam, B.T. Chiad, A.J.H. Al-Wattar, Q.M. Salman,
Spectroscopic comparison of UV-VIS electronic transitions of
Cr ions in solution, sol and Xerogel silica matrices, Nano Sci.
Nano Technol.: An Indian J., 6 (2012) 90–96.
- Z.H. Yahia, H.N. Bayakly, M. Shafi, S. Painter, V. Taylor,
J. Greene, K. Rosli, Interaction of malate and lactate with
chromium(III) and iron(III) in aqueous solutions, Synth. React.
Inorg. Metal-Org. Nano-Metal Chem., 7 (2005) 515–522.
- K. Zavitsanos, K. Tampouris, A.L. Petrou, Reaction of
chromium(III) with 3,4-dihydroxybenzoic acid: kinetics and
mechanism in weak acidic aqueous solutions, Bioinorg. Chem.
Appl., 2008 (2008) 212461, doi: 10.1155/2008/212461.
- Z. Pei, J. Pei, H. Chen, L. Gao, S. Zhou, Hydrothermal synthesis
of large sized Cr2O3 polyhedrons under free surfactant,
Mater. Lett., 159 (2015) 357–361.
- S. Tian, X. Ye, Y. Dong, W. Li, B. Zhang, B. Li, H. Feng,
Production and characterization of chromium oxide
(Cr2O3)
via a facile combination of electrooxidation and calcination,
Int. J. Electrochem. Sci., 14 (2019) 8805–8818.
- S. Khamlich, E. Manikandan, B.D. Ngom, J. Sithole,
O. Nemraoui, I. Zorkani, R. McCrindle, N. Cingo, M. Maaza,.
Synthesis, characterization, and growth mechanism of α-Cr2O3
monodispersed particles, J. Phys. Chem. Solids, 72 (2011)
714–718.
- S.M. Abo-Naf, M.S. El-Amiry, A.A. Abdel-Khalek, FT-IR and
UV–Vis optical absorption spectra of γ-irradiated calcium
phosphate glasses doped with Cr2O3, V2O5 and Fe2O3,
Opt. Mater., 30 (2008) 900–909.
- B.B. Kamble, M. Naikwade, K.M. Garadkar, R.B. Mane,
K.K.K. Sharma, B.D. Ajalkar, S.N. Tayade, Ionic liquid assisted
synthesis of chromium oxide (Cr2O3) nanoparticles and their
application in glucose sensing, J. Mater. Sci.: Mater. Electron.,
30 (2019) 13984–13993.
- M.A. Vuurman, I.E. Wachs, D.J. Stufkens, A. Oskam,
Characterization of chromium oxide supported on Al2O3, ZrO2,
TiO2, and SiO2 under dehydrated conditions, J. Mol. Catal.,
80 (1993) 209–227.
- Rakesh, S. Ananda, N.M. Made Gowda, Synthesis of
chromium(III) oxide nanoparticles by electrochemical method
and Mukia Maderaspatana plant extract, characterization,
KMnO4 decomposition and antibacterial study, Mod. Res.
Catal., 2 (2013) 127–135.
- K.S. Budiasih, C. Anwar, S.J. Santosa, H. Ismail, Preparation and
Infrared Spectroscopic Studies of Chromium(III) – Glutamic
Acid Complexes, Antidiabetic Supplement Candidates, Proc.
Int. Conf. Indonesian Chem. Soc., Malang, Indonesia, 2012.
- K.S. Budiasih, C. Anwar, S.J. Santosa, H. Ismail, Synthesis and
characterization of chromium(III) complexes with L-glutamic
acid, glycine and L-cysteine, Int. J. Biotechnol. Bioeng., 7 (2013)
458–462.
- T. Ivanova1, K. Gesheva, A. Cziraki, A. Szekeres,
E. Vlaikova, Structural transformations and their relation to
the optoelectronic properties of chromium oxide thin films,
J. Phys.: Conf. Ser., Fifteenth International Summer School
on Vacuum, Electron and Ion Technologies (VEIT 2007)
17–21 September 2007, Bulbank Hotel, Sozopol, Bulgaria,
113 (2008) 012030, doi: 10.1088/1742-6596/113/1/012030.
- P.M. Sousa, A.J. Silvestre, N. Popovici, M.L. Paramês, O. Conde,
KrF Laser CVD of Chromium Oxide by Photodissociation of
Cr(CO)6, Mater. Sci. Forum, 455–456 (2004) 20–24.
- G.H. Philip, D. Wayne, Catalytic activity, surface redox
properties, and structural evolution during the thermal
processing of chromium-promoted ceria oxidation catalysts,
Chem. Mater., 13 (2001) 1708–1719.
- S. Mitchell, R. Waring, Aminophenols, Kirk-Othmer Encyclopedia
of Chemical Technology, 2000, doi: 10.1002/0471238961.01
13091413092003.a01.
- S.A. Khan, S. Shahid, S. Hanif, H.S. Almoallim, S.A. Alharbi,
H. Sellami, Green synthesis of chromium oxide nanoparticles
for antibacterial, antioxidant anticancer, and biocompatibility
activities, Int. J. Mol. Sci., 22 (2021) 502, doi: 10.3390/ijms22020502.
- T. Dahryn, T. Mahendra, B. Alice, N. Gopal, J. Snehasis,
Impact of consciousness energy healing treatment on the
physicochemical and thermal properties of chromium trioxide
(CrO3), Pharm. Sci. Anal. Res. J., 2 (2019) 180016.
- K.S. Fathalla, H.A. El-Ghamry, M. Gaber, Ru(III) complexes
of triazole based Schiff base and azo dye ligands: an insight
into the molecular structure and catalytic role in oxidative
dimerization of 2-aminophenol, Inorg. Chem. Commun.,
129 (2021) 108616, doi: 10.1016/j.inoche.2021.108616.
- R. Elder, Final report on the safety assessment of p-aminophenol,
m-aminophenol and o-aminophenol, Int. J. Toxicol., 7 (1988)
279–333.
- M. Terashima, A facile synthesis of 2-substituted benzoxazoles,
Synthesis, 6 (1982) 484–485.
- O.A. Mehrez, F. Dossier-Berne, B. Legube, Oxidation of
2-aminophenol to 2-amino-3H-phenoxazin-3-one with
monochloramine in aqueous environment: a new method for
APO synthesis?, Chemosphere, 145 (2016) 464–469.
- A. Sahoo, S. Kumar, N. Dehury, S. Patra, A porous trimetallic
Au@Pd@Ru nanoparticle system: synthesis, characterisation
and efficient dye degradation and removal, J. Mater. Chem. A,
38 (2015) 19376–19383.