References

  1. S. Benkhaya, S. M’rabet, A. El Harfi, Classifications, properties, recent synthesis and applications of azo dyes, Heliyon, 6 (2020) e03271, doi: 10.1016/j.heliyon.2020.e03271.
  2. S. Dutta, R. Saha, H. Kalita, A.N. Bezbaruah, Rapid reductive degradation of azo and anthraquinone dyes by nanoscale zerovalent iron, Environ. Technol. Innovation, 5 (2016) 176–187.
  3. A. Mehrizad, M.A. Behnajady, P. Gharbani, S. Sabbagh, Sonocatalytic degradation of Acid Red 1 by sonochemically synthesized zinc sulfide-titanium dioxide nanotubes: optimization, kinetics and thermodynamics studies, J. Cleaner Prod., 215 (2019) 1341–1350.
  4. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  5. M.A. Islam, I. Ali, S.M.A. Karim, M.S. Hossain Firoz, A.-N. Chowdhury, D.W. Morton, M.J. Angove, Removal of dye from polluted water using novel nano manganese oxide-based materials, J. Water Process Eng., 32 (2019) 100911, doi: 10.1016/j.jwpe.2019.100911.
  6. E. Fathi, P. Gharbani, Modeling and optimization removal of reactive Orange 16 dye using
    MgO/g-C3N4/zeolite nanocomposite in coupling with LED and ultrasound by response surface methodology, Diamond Relat. Mater., 115 (2021) 108346, doi: 10.1016/j.diamond.2021.108346.
  7. P. Xu, G. Ming Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  8. I. Polowczyk, P. Cyganowski, J. Ulatowska, W. Sawiński, A. Bastrzyk, Synthetic iron oxides for adsorptive removal of arsenic, Water Air Soil Pollut., 229 (2018) 203, doi: 10.1007/s11270-018-3866-2.
  9. K. Lu, T. Wang, L. Zhai, W. Wu, S. Dong, S. Gao, L. Mao, Adsorption behavior and mechanism of Fe–Mn binary oxide nanoparticles: adsorption of methylene blue, J. Colloid Interface Sci., 539 (2019) 553–562.
  10. G. Zhang, J. Qu, H. Liu, R. Liu, R. Wu, Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal, Water Res., 41 (2007) 1921–1928.
  11. G.-S. Zhang, J.-H. Qu, H.-J. Liu, R.-P. Liu, G.-T. Li, Removal mechanism of As(III) by a novel Fe−Mn binary oxide adsorbent: oxidation and sorption, Environ. Sci. Technol., 41 (2007) 4613–4619.
  12. M. Liang, S. Xu, Y. Zhu, X. Chen, Z. Deng, L. Yan, H. He, Preparation and Characterization of Fe–Mn binary oxide/mulberry stem biochar composite adsorbent and adsorption of Cr(VI) from aqueous solution, Int. J. Environ. Res. Public Health, 17 (2020) 676, doi: 10.3390/ijerph17030676.
  13. G. Yin, X. Song, L. Tao, B. Sarkar, A.K. Sarmah, W. Zhang, Q. Lin, R. Xiao, Q. Liu, H. Wang, Novel Fe–Mn binary oxidebiochar as an adsorbent for removing Cd(II) from aqueous solutions, Chem. Eng. J., 389 (2020) 124465, doi: 10.1016/j. cej.2020.124465.
  14. Q. Ning, Z. Yin, Y. Liu, X. Tan, G. Zeng, L. Jiang, S. Liu, S. Tian, N. Liu, X. Wang, Fabrication of stabilized Fe–Mn binary oxide nanoparticles: effective adsorption of 17β-estradiol and influencing factors, Int. J. Environ. Res. Public Health, 15 (2018) 2218, doi: 10.3390/ijerph15102218.
  15. L.-B. Zhong, J. Yin, S.-G. Liu, Q. Liu, Y.-S. Yang, Y.-M. Zheng, Facile one-pot synthesis of urchin-like Fe–Mn binary oxide nanoparticles for effective adsorption of Cd(II) from water, RSC Adv., 6 (2016) 103438–103445.
  16. R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: future prospects for an emerging water treatment technology, J. Hazard. Mater., 211 (2012) 112–125.
  17. C.D. Raman, S. Kanmani, Textile dye degradation using nano zero valent iron: a review, J. Environ. Manage., 177 (2016) 341–355.
  18. R. Mukherjee, R. Kumar, A. Sinha, Y. Lama, A.K. Saha, A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation, Crit. Rev. Env. Sci. Technol., 46 (2016) 443–466.
  19. D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour., 51 (2013) 104–122.
  20. T. Pasinszki, M. Krebsz, Synthesis and application of zerovalent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects, Nanomaterials (Basel), 10 (2020) 917, doi: 10.3390/nano10050917.
  21. N.A. Zarime, W.Z.W. Yaacob, H. Jamil, Decolourization of anionic dye by activated carbon-supported nano-zero valent iron (nZVI), Chem. Eng. Trans., 73 (2019) 85–90.
  22. A.D. Bokare, R.C. Chikate, C.V. Rode, K.M. Paknikar, Ironnickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution, Appl. Catal., B, 79 (2008) 270–278.
  23. M. Barreto-Rodrigues, J. Silveira, J.A. Zazo, J.J. Rodriguez, Synthesis, characterization and application of nanoscale zerovalent iron in the degradation of the azo dye Disperse Red 1, J. Environ. Chem. Eng., 5 (2017) 628–634.
  24. D.V. Kerkez, D.D. Tomašević, G. Kozma, M.R. Bečelić-Tomin, M.D. Prica, S.D. Rončević, Á. Kukovecz, B.D. Dalmacija, Z. Kónya, Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: a comparative study, J. Taiwan Inst. Chem. Eng., 45 (2014) 2451–2461.
  25. H. Thanh, D. Binh, T. Thu, B. Ngoc, L. Van, Preparation and optimization of the composition of novel nZVI/(Fe–Mn) binary oxide/bentonite adsorbent for removal of Reactive Yellow 145 dye (RY-145) from aqueous solution, JCA, 9 (2020) 45–51.
  26. G. Zhang, H. Liu, J. Qu, W. Jefferson, Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid, J. Colloid Interface Sci., 366 (2012) 141–146.
  27. Ç. Üzüm, T. Shahwan, A.E. Eroğlu, I. Lieberwirth, T.B. Scott, K.R. Hallam, Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions, Chem. Eng. J., 144 (2008) 213–220.
  28. C.R. Keenan, R. Goth-Goldstein, D. Lucas, D.L. Sedlak, Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells, Environ. Sci. Technol., 43 (2009) 4555–4560.
  29. Y. Wu, M. Yang, S. Hu, L. Wang, H. Yao, Characteristics and mechanisms of 4A zeolite supported nanoparticulate zero-valent iron as Fenton-like catalyst to degrade methylene blue, Toxicol. Environ. Chem., 96 (2014) 227–242.
  30. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  31. J. Wang, G. Liu, T. Li, C. Zhou, Physicochemical studies toward the removal of Zn(II) and Pb(II) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles, RSC Adv., 5 (2015) 29859–29871.
  32. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j. jhazmat.2020.122383.
  33. P. Gharbani, Modeling and optimization of Reactive Yellow 145 dye removal process onto synthesized MnOX–CeO2 using response surface methodology, Colloids Surf., A, 548 (2018) 191–197.
  34. F. Freyria, S. Esposito, M. Armandi, F. Deorsola, E. Garrone, B. Bonelli, Role of pH in the aqueous phase reactivity of zerovalent iron nanoparticles with Acid Orange 7, a model molecule of azo dyes, J. Nanomater., 2017 (2017) 1–13.
  35. N.A. Kalkan, S. Aksoy, E.A. Aksoy, N. Hasirci, Adsorption of Reactive Yellow 145 onto chitosan coated magnetite nanoparticles, J. Appl. Polym. Sci., 124 (2012) 576–584.
  36. A. Lafta, H. Ismael, N. Nema, S. Kadhim, A. Mousa, K. Abdali, Removal of reactive yellow dye 145 from wastewaters over activated carbon that is derived from Iraqi kehdrawy date palm seeds, WSN, 21 (2015) 124–136.
  37. S. Raghunath, K. Anand, R.M. Gengan, M.K. Nayunigari, A. Maity, Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater, J. Photochem. Photobiol., B, 165 (2016) 189–201.
  38. J. Li, J. Cai, L. Zhong, H. Wang, H. Cheng, Q. Ma, Adsorption of reactive dyes onto chitosan/montmorillonite intercalated composite: multi-response optimization, kinetic, isotherm and thermodynamic study, Water Sci. Technol., 77 (2018) 2598–2612.
  39. N. Oke, S. Mohan, Development of nanoporous textile sludgebased adsorbent for the dye removal from industrial textile effluent, J. Hazard. Mater., 422 (2022) 126864, doi: 10.1016/j.jhazmat.2021.126864.