References

  1. Y.Y. Si, J.N. Li, B. Cui, D.J. Tang, L. Yang, V. Murugadoss, S. Maganti, M. Huang, Z.H. Guo, Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water, Adv. Compos. Hybrid Mater., 5 (2022) 1180–1195.
  2. A. Umar, M.M. Rahman, A. Al-Hajry, Y.-B. Hahn, Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets, Electrochem. Commun., 11 (2009) 278–281.
  3. W.S. Choi, H.-J. Lee, Nanostructured materials for water purification: adsorption of heavy metal ions and organic dyes, Polymers (Basel), 14 (2022) 2183, doi: 10.3390/polym14112183.
  4. A. Hadi Abdullah, R. Mat, S. Somderam, A. Shah Abd Aziz, M. Abu Asshaary Daud, H2S adsorption using ZnO modified Na-A zeolite and conditions optimization by response surface methodology, J. Phys. Conf. Ser., 2266 (2022) 012006, doi: 10.1088/1742-6596/2266/1/012006.
  5. S.-J. Hong, H.-J. Mun, B.-J. Kim, Y.-S. Kim, Characterization of nickel oxide nanoparticles synthesized under low temperature, Micromachines, 12 (2021) 1168, doi: 10.3390/mi12101168.
  6. H. Li, Y. Li, R. Wang, R. Cao, Synthesis and electrochemical capacitor performance of mesostructured nickel oxide/carbon composites by a co-casting method, J. Alloys Compd., 481 (2009) 100–105.
  7. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, A.A. Bazrafshan, Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology, Spectrochim. Acta, Part A, 145 (2015) 203–212.
  8. M. Iwanow, T. Gärtner, V. Sieber, B. König, Activated carbon as catalyst support: precursors, preparation, modification and characterization, Beilstein J. Org. Chem., 16 (2020) 1188–1202.
  9. R. Kupila, K. Lappalainen, T. Hu, H. Romar, U. Lassi, Ligninbased activated carbon-supported metal oxide catalysts in lactic acid production from glucose, Appl. Catal., A, 612 (2021) 118011, doi: 10.1016/j.apcata.2021.118011.
  10. S. Anbazhagan, V. Thiruvengatam, K. Kulanthai, Adaptive neuro-fuzzy inference system and artificial neural network modeling for the adsorption of methylene blue by novel adsorbent in a fixed-bed column method, Iran. J. Chem. Chem. Eng., 39 (2020) 75–93.
  11. S. Anbazhagan, V. Thiruvengadam, A. Sukeri, An Amberlite IRA-400 Cl ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory, RSC Adv., 11 (2021) 4478–4488.
  12. M. Auta, B.H. Hameed, Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue, J. Ind. Eng. Chem., 19 (2013) 1153–1161.
  13. S.-L. Liu, Y.-N. Wang, K.-T. Lu, Preparation and pore characterization of activated carbon from Ma bamboo (Dendrocalamus latiflorus) by H3PO4 chemical activation, J. Porous Mater., 21 (2014) 459–466.
  14. J.M.V. Nabais, C. Laginhas, M.M.L.R. Carrott, P.J.M. Carrott, J.E.C. Amorós, A.V.N. Gisbert, Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass, Appl. Surf. Sci., 265 (2013) 919–924.
  15. A. Policicchio, E. Maccallini, R.G. Agostino, F. Ciuchi, A. Aloise, G. Giordano, Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications, Fuel, 104 (2013) 813–821.
  16. B. Meryemoglu, S. Irmak, A. Hesenov, O. Erbatur, Preparation of activated carbon supported Pt catalysts and optimization of their catalytic activities for hydrogen gas production from the hydrothermal treatment of biomass-derived compounds, Int. J. Hydrogen Energy, 37 (2012) 17844–17852.
  17. P. Samiyammal, A. Kokila, L.A. Pragasan, R. Rajagopal, R. Sathya, S. Ragupathy, M. Krishnakumar, V.R. Minnam Reddy, Adsorption of brilliant green dye onto activated carbon prepared from cashew nut shell by KOH activation: studies on equilibrium isotherm, Environ. Res., 212 (2022) 113497, doi: 10.1016/j.envres.2022.113497.
  18. M. Sultana, M.H. Rownok, M. Sabrin, M.H. Rahaman, S.M.N. Alam, A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption, Cleaner Eng. Technol., 6 (2022) 100382, doi: 10.1016/j.clet.2021.100382.
  19. J. Lin, S. Zhao, S. Cheng, Microwave-assisted preparation of cotton stem-derived activated carbon for dye removal from synthetic wastewater, Environ. Sci. Pollut. Res., 29 (2022) 48839–48850.
  20. S. Soroush, N.M. Mahmoodi, B. Mohammadnezhad, A. Karimi, Activated carbon (AC)-metal-organic framework (MOF) composite: synthesis, characterization and dye removal, Korean J. Chem. Eng., 39 (2022) 2394–2404.
  21. E. Kaçan, C. Kütahyalı, Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges, J. Anal. Appl. Pyrolysis, 97 (2012) 149–157.
  22. A.M. Mansour, E.M. El Bakry, N.T. Abdel-Ghani, Photocatalytic degradation of methylene blue with copper(II) oxide synthesized by thermal decomposition of flubendazole complexes, J. Photochem. Photobiol., A, 327 (2016) 21–24.
  23. A. Sivaprakasam, T. Venugopal, Modelling the removal of Lead from synthetic contaminated water by activated carbon from biomass of Diplocyclos palmatus by RSM, Global Nest J., 21 (2019) 319–327.
  24. J. Shu, S. Cheng, H. Xia, L. Zhang, J. Peng, C. Li, S. Zhang, Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue, RSC Adv., 7 (2017) 14395–14405.
  25. S.D. Khairnar, V.S. Shrivastava, Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study, J. Taibah Univ. Sci., 13 (2019) 1108–1118.
  26. A. Omidvar, B. Jaleh, M. Nasrollahzadeh, Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water, J. Colloid Interface Sci., 496 (2017) 44–50.
  27. M.H. Chou, S.B. Liu, C.Y. Huang, S.Y. Wu, C.L. Cheng, Confocal Raman spectroscopic mapping studies on a single CuO nanowire, Appl. Surf. Sci., 254 (2008) 7539–7543.
  28. G.F. Cai, J.P. Tu, J. Zhang, Y.J. Mai, Y. Lu, C.D. Gu, X.L. Wang, An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties, Nanoscale, 4 (2012) 5724–5730.
  29. R. Sangeetha Piriya, R.M. Jayabalakrishnan, M. Maheswari, K. Boomiraj, S. Oumabady, Coconut shell derived ZnCl2 activated carbon for malachite green dye removal, Water Sci. Technol., 83 (2021) 1167–1182.
  30. K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Ind. Eng. Chem. Res., 43 (2004) 7683–7696.
  31. C.-Y. Chu, M.H. Huang, Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers, J. Mater. Chem. A, 5 (2017) 15116–15123.
  32. M.A. Islam Molla, I. Tateishi, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco, Evaluation of reaction mechanism for photocatalytic degradation of dye with self-sensitized TiO2 under visible light irradiation, Open J. Inorg. Non-met. Mater., 7 (2017) 1–7.
  33. T. An, J. An, H. Yang, G. Li, H. Feng, X. Nie, Photocatalytic degradation kinetics and mechanism of antivirus druglamivudine in TiO2 dispersion, J. Hazard. Mater., 197 (2011) 229–236.