References
- K. Fearon, F. Strasser, S.D. Anker, I. Bosaeus, E. Bruera,
R.L. Fainsinger, A. Jatoi, C. Loprinzi, N. MacDonald,
G. Mantovani, M. Davis, M. Muscaritoli, F. Ottery, L. Radbruch,
P. Ravasco, D. Walsh, A. Wilcock, S. Kaasa, V.E. Baracos,
Definition and classification of cancer cachexia: an international
consensus, Lancet Oncol., 12 (2011) 489–495.
- M.E. Schipanski, E.M. Bennett, The influence of agricultural
trade and livestock production on the global phosphorus cycle,
Ecosystems, 15 (2012) 256–268.
- F. Li, S.K. Cheng, H.L. Yu, D.W. Yang, Waste from livestock
and poultry breeding and its potential assessment of biogas
energy in rural china, J. Cleaner Prod., 126 (2016) 451–460.
- M.A. Mallin, L.B. Cahoon, Industrialized animal production—
a major source of nutrient and microbial pollution to aquatic
ecosystems, Popul. Environ., 24 (2003) 369–385.
- M. Yaseen, M.Z. Aziz, A.A. Jafar, M. Naveed, M. Saleem, Use
of textile waste water along with liquid NPK fertilizer for
production of wheat on saline sodic soils, Int. J. Phytorem.,
18 (2016) 502–508.
- J.M. O’Neil, T.W. Davis, M.A. Burford, C.J. Gobler, The
rise of harmful cyanobacteria blooms: the potential roles of
eutrophication and climate change, Harmful Algae, 14 (2012)
313–334.
- R. Moral, M.D. Perez-Murcia, A. Perez-Espinosa, J. Moreno-Casells, C. Paredes, Estimation of nutrient values of pig slurries
in southeast Spain using easily determined properties, Waste
Manage., 25 (2005) 719–725.
- D.L. Cheng, H.H. Ngo, W.S. Guo, S.W. Chang, D.D. Nguyen,
S.M. Kumar, Microalgae biomass from swine wastewater and its
conversion to bioenergy, Bioresour. Technol., 275 (2019) 109–122.
- B.T.K. Anh, N.V. Thanh, N.M. Phuong, N.T.H. Ha, N.H. Yen,
B.Q. Lap, D.D. Kim, Selection of suitable filter materials for
horizontal subsurface flow constructed wetland treating swine
wastewater, Water Air Soil Pollut., 231 (2020) 88–98.
- R.-F. Chen, L. Wu, H.-T. Zhong, C.-X. Liu, W. Qiao, C.-H. Wei,
Evaluation of electrocoagulation process for high-strength
swine wastewater pretreatment, Sep. Purif. Technol., 272 (2021)
118900, doi: 10.1016/j.seppur.2021.118900.
- M.J. Hansen, J.N. Kamp, A.P.S. Adamsen, A. Feilberg, Lowemission
slurry pits for pig houses with straw application,
Biosyst. Eng., 197 (2020) 56–63.
- G. Lourinho, P.S.D. Brito, Electrolytic treatment of swine
wastewater: recent progress and challenges, Waste Biomass
Valorization, 12 (2021) 553–576.
- I.Y. López-Pacheco, A. Silva-Núñez, J.S. García-Perez,
D. Carrillo-Nieves, C. Salinas-Salazar, C. Castillo-Zacarías,
S. Afewerki, D. Barceló, H.N.M. Iqbal, R. Parra-Saldívar, Phycoremediation
of swine wastewater as a sustainable model based
on circular economy, J. Environ. Manage., 278 (2021) 111534,
doi: 10.1016/j.jenvman.2020.111534.
- M. Sandoval-Herazo, G. Martinez-Resendiz, E.F. Echeverria,
G. Fernandez-Lambert, L.C.S. Herazo, Plant biomass production
in constructed wetlands treating swine wastewater in
tropical climates, Fermentation-Basel, 7 (2021) 296–308.
- H.-H. Cheng, B. Narindri, H. Chu, L.-M. Whang, Recent
advancement on biological technologies and strategies for
resource recovery from swine wastewater, Bioresour. Technol.,
303 (2020) 122861, doi: 10.1016/j.biortech.2020.122861.
- P.A. Gonzalez-Tineo, U. Duran-Hinojosa, L.R. Delgadillo-Mirquez, E.R. Meza-Escalante, P. Gortares-Moroyoqui,
R.G. Ulloa-Mercado, D. Serrano-Palacios, Performance
improvement of an integrated anaerobic-aerobic hybrid
reactor for the treatment of swine wastewater, J. Water Process
Eng., 34 (2020) 101164, doi: 10.1016/j.jwpe.2020.101164.
- A. Debnath, R. Thapa, K.K. Chattopadhyay, B. Saha,
Spectroscopic studies on interaction of Congo red with ferric
chloride in aqueous medium for wastewater treatment, Sep. Sci.
Technol., 50 (2015) 1684–1688.
- P. Niquette, F. Monette, A. Azzouz, R. Hausler, Impacts of
substituting aluminum-based coagulants in drinking water
treatment, Water Qual. Res. J. Can., 39 (2004) 303–310.
- N.K. Zaman, R. Rohani, I.I. Yusoff, M.A. Kamsol, S.A. Basiron,
A.I. Abd Rashid, Eco-friendly coagulant versus industrially used
coagulants: identification of their coagulation performance,
mechanism and optimization in water treatment process, Int.
J. Environ. Res. Public Health, 18 (2021) 9164, doi: 10.3390/ijerph18179164.
- O. Giuffre, S. Angowska, C. Foti, S. Sammartano,
Thermodynamic study on the interaction of ampicillin and
amoxicillin with Ca2+ in aqueous solution at different ionic
strengths and temperatures, J. Chem. Eng. Data, 64 (2019)
800–809.
- S.R. Paul, N.H. Singh, A. Debnath, Quick and enhanced
separation of Eosin Yellow dye from aqueous solution by
FeCl3 interaction: thermodynamic study and treatment
cost analysis, Int. J. Environ. Anal. Chem., (2022) 2076218,
doi: 10.1080/03067319.2022.2076218.
- C. Wang, W.H. Hu, Y. Zhang, Y.C. Wang, M. Zeng, Application
of montmorillonite flocculant modified by acid in high
concentrated wastewater, Environ. Pollut. Control, 40 (2018)
1379–1382 (In Chinese).
- C. Wang, P. Lin, B.J. Dou, Preparation and characteristics of
flocculant with clay minerals as raw materials, J. Tianjin Univ.
Sci. Technol., 30 (2017) 62–66 (In Chinese).
- C. Wang, Y.C. Wang, Y.M. Ma, Design and research of
continuous flocculation device for acid modified vermiculite,
J. Tianjin Univ. Sci. Technol., 35 (2020) 52–56 (In Chinese).
- T. Ritigala, Y.L. Chen, J.X. Zheng, H. Demissie, L.B. Zheng,
D.W. Yu, Q.W. Sui, M.X. Chen, J.X. Zhu, H. Fan, J. Li, Q. Gao,
S.K. Weragoda, R. Weerasooriya, K.B.S.N. Jinadasa, Y.S. Wei,
Comparison of an integrated short-cut biological nitrogen
removal process with magnetic coagulation treating swine
wastewater and food waste digestate, Bioresour. Technol., 329
(2021) 124904, doi: 10.1016/j.biortech.2021.124904.
- A. Chini, C.E. Hollas, A.C. Bolsan, F.G. Antes, H. Treichel,
A. Kunz, Treatment of digestate from swine sludge continuous
stirred tank reactor to reduce total carbon and total solids
content, Environ. Dev. Sustain., 23 (2021) 12326–12341.
- M.Y. Eddeeb, G. Heikal, A. El Shahawy, Organic pollutants
removal by flocculation process using ferric chloride/cationic
polyelectrolyte for wastewater agricultural reuse, Desal. Water
Treat., 140 (2019) 231–244.
- M.C. He, L. Wang, P.P. Chen, Z.L. Zhou, J. Wang, S. Miao,
C. Huang, Research on flocculation-advanced oxidation
coupling treatment in kitchen waste pressed filtration water,
Fresenius Environ. Bull., 31 (2022) 4152–4158.
- C. Wang, F. Liu, W.H. Hu, L. Li, R.H. Zhao, The performance of
modified vermiculite flocculant, J. Tianjin Univ. Sci. Technol.,
33 (2018) 49–53 (in Chinese).
- Z. Yang, Y.B. Shang, Y.B. Lu, Y.C. Chen, Huang, A.M. Chen,
Y.X. Jiang, W. Gu, X.Z. Qian, H. Yang, R.S. Cheng, Flocculation
properties of biodegradable amphoteric chitosan-based
flocculants, Chem. Eng. J., 172 (2011) 287–295.
- H. Liao, H. Deng, Z.M. Su, A.M. Zeng, Enhanced coagulation
process of montmorillonite powder combined with anionic
polyacrylamide to treat extremely low turbidity water, J. Munic.
Technol., 40 (2022) 171–174 (in Chinese).
- E.A. Lopez-Maldonado, M.T. Oropeza-Guzman,
J.L. Jurado-Baizaval, A. Ochoa-Teran, Coagulation–flocculation
mechanisms in wastewater treatment plants through zeta
potential measurements, J. Hazard. Mater., 279 (2014) 1–10.
- S.S. Dryabina, M.S. Rudenko, Y.V. Shulevich, A.V. Navrotskii,
I.A. Novakov, Specifics of kaolin dispersion flocculation due
to a polyelectrolyte complex formation on particle surface,
Colloid. Polym. Sci., 298 (2020) 519–533.
- L.J. Wang, F.F. Min, J. Chen, T. Wang, Z. Zhou, Study of
flocculation performance and mechanism of ultrafine
montmorillonite particles with NPAM, Physicochem. Probl.
Miner. Process., 58 (2022) 147452, doi: 10.37190/ppmp/147790.
- A. Rabiee, A. Ershad-Langroudi, M.E. Zeynali, A survey on
cationic polyelectrolytes and their applications: acrylamide
derivatives, Rev. Chem. Eng., 31 (2015) 239–261.