References

  1. K. Fearon, F. Strasser, S.D. Anker, I. Bosaeus, E. Bruera, R.L. Fainsinger, A. Jatoi, C. Loprinzi, N. MacDonald, G. Mantovani, M. Davis, M. Muscaritoli, F. Ottery, L. Radbruch, P. Ravasco, D. Walsh, A. Wilcock, S. Kaasa, V.E. Baracos, Definition and classification of cancer cachexia: an international consensus, Lancet Oncol., 12 (2011) 489–495.
  2. M.E. Schipanski, E.M. Bennett, The influence of agricultural trade and livestock production on the global phosphorus cycle, Ecosystems, 15 (2012) 256–268.
  3. F. Li, S.K. Cheng, H.L. Yu, D.W. Yang, Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural china, J. Cleaner Prod., 126 (2016) 451–460.
  4. M.A. Mallin, L.B. Cahoon, Industrialized animal production— a major source of nutrient and microbial pollution to aquatic ecosystems, Popul. Environ., 24 (2003) 369–385.
  5. M. Yaseen, M.Z. Aziz, A.A. Jafar, M. Naveed, M. Saleem, Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils, Int. J. Phytorem., 18 (2016) 502–508.
  6. J.M. O’Neil, T.W. Davis, M.A. Burford, C.J. Gobler, The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change, Harmful Algae, 14 (2012) 313–334.
  7. R. Moral, M.D. Perez-Murcia, A. Perez-Espinosa, J. Moreno-Casells, C. Paredes, Estimation of nutrient values of pig slurries in southeast Spain using easily determined properties, Waste Manage., 25 (2005) 719–725.
  8. D.L. Cheng, H.H. Ngo, W.S. Guo, S.W. Chang, D.D. Nguyen, S.M. Kumar, Microalgae biomass from swine wastewater and its conversion to bioenergy, Bioresour. Technol., 275 (2019) 109–122.
  9. B.T.K. Anh, N.V. Thanh, N.M. Phuong, N.T.H. Ha, N.H. Yen, B.Q. Lap, D.D. Kim, Selection of suitable filter materials for horizontal subsurface flow constructed wetland treating swine wastewater, Water Air Soil Pollut., 231 (2020) 88–98.
  10. R.-F. Chen, L. Wu, H.-T. Zhong, C.-X. Liu, W. Qiao, C.-H. Wei, Evaluation of electrocoagulation process for high-strength swine wastewater pretreatment, Sep. Purif. Technol., 272 (2021) 118900, doi: 10.1016/j.seppur.2021.118900.
  11. M.J. Hansen, J.N. Kamp, A.P.S. Adamsen, A. Feilberg, Lowemission slurry pits for pig houses with straw application, Biosyst. Eng., 197 (2020) 56–63.
  12. G. Lourinho, P.S.D. Brito, Electrolytic treatment of swine wastewater: recent progress and challenges, Waste Biomass Valorization, 12 (2021) 553–576.
  13. I.Y. López-Pacheco, A. Silva-Núñez, J.S. García-Perez, D. Carrillo-Nieves, C. Salinas-Salazar, C. Castillo-Zacarías, S. Afewerki, D. Barceló, H.N.M. Iqbal, R. Parra-Saldívar, Phycoremediation of swine wastewater as a sustainable model based on circular economy, J. Environ. Manage., 278 (2021) 111534, doi: 10.1016/j.jenvman.2020.111534.
  14. M. Sandoval-Herazo, G. Martinez-Resendiz, E.F. Echeverria, G. Fernandez-Lambert, L.C.S. Herazo, Plant biomass production in constructed wetlands treating swine wastewater in tropical climates, Fermentation-Basel, 7 (2021) 296–308.
  15. H.-H. Cheng, B. Narindri, H. Chu, L.-M. Whang, Recent advancement on biological technologies and strategies for resource recovery from swine wastewater, Bioresour. Technol., 303 (2020) 122861, doi: 10.1016/j.biortech.2020.122861.
  16. P.A. Gonzalez-Tineo, U. Duran-Hinojosa, L.R. Delgadillo-Mirquez, E.R. Meza-Escalante, P. Gortares-Moroyoqui, R.G. Ulloa-Mercado, D. Serrano-Palacios, Performance improvement of an integrated anaerobic-aerobic hybrid reactor for the treatment of swine wastewater, J. Water Process Eng., 34 (2020) 101164, doi: 10.1016/j.jwpe.2020.101164.
  17. A. Debnath, R. Thapa, K.K. Chattopadhyay, B. Saha, Spectroscopic studies on interaction of Congo red with ferric chloride in aqueous medium for wastewater treatment, Sep. Sci. Technol., 50 (2015) 1684–1688.
  18. P. Niquette, F. Monette, A. Azzouz, R. Hausler, Impacts of substituting aluminum-based coagulants in drinking water treatment, Water Qual. Res. J. Can., 39 (2004) 303–310.
  19. N.K. Zaman, R. Rohani, I.I. Yusoff, M.A. Kamsol, S.A. Basiron, A.I. Abd Rashid, Eco-friendly coagulant versus industrially used coagulants: identification of their coagulation performance, mechanism and optimization in water treatment process, Int. J. Environ. Res. Public Health, 18 (2021) 9164, doi: 10.3390/ijerph18179164.
  20. O. Giuffre, S. Angowska, C. Foti, S. Sammartano, Thermodynamic study on the interaction of ampicillin and amoxicillin with Ca2+ in aqueous solution at different ionic strengths and temperatures, J. Chem. Eng. Data, 64 (2019) 800–809.
  21. S.R. Paul, N.H. Singh, A. Debnath, Quick and enhanced separation of Eosin Yellow dye from aqueous solution by FeCl3 interaction: thermodynamic study and treatment cost analysis, Int. J. Environ. Anal. Chem., (2022) 2076218, doi: 10.1080/03067319.2022.2076218.
  22. C. Wang, W.H. Hu, Y. Zhang, Y.C. Wang, M. Zeng, Application of montmorillonite flocculant modified by acid in high concentrated wastewater, Environ. Pollut. Control, 40 (2018) 1379–1382 (In Chinese).
  23. C. Wang, P. Lin, B.J. Dou, Preparation and characteristics of flocculant with clay minerals as raw materials, J. Tianjin Univ. Sci. Technol., 30 (2017) 62–66 (In Chinese).
  24. C. Wang, Y.C. Wang, Y.M. Ma, Design and research of continuous flocculation device for acid modified vermiculite, J. Tianjin Univ. Sci. Technol., 35 (2020) 52–56 (In Chinese).
  25. T. Ritigala, Y.L. Chen, J.X. Zheng, H. Demissie, L.B. Zheng, D.W. Yu, Q.W. Sui, M.X. Chen, J.X. Zhu, H. Fan, J. Li, Q. Gao, S.K. Weragoda, R. Weerasooriya, K.B.S.N. Jinadasa, Y.S. Wei, Comparison of an integrated short-cut biological nitrogen removal process with magnetic coagulation treating swine wastewater and food waste digestate, Bioresour. Technol., 329 (2021) 124904, doi: 10.1016/j.biortech.2021.124904.
  26. A. Chini, C.E. Hollas, A.C. Bolsan, F.G. Antes, H. Treichel, A. Kunz, Treatment of digestate from swine sludge continuous stirred tank reactor to reduce total carbon and total solids content, Environ. Dev. Sustain., 23 (2021) 12326–12341.
  27. M.Y. Eddeeb, G. Heikal, A. El Shahawy, Organic pollutants removal by flocculation process using ferric chloride/cationic polyelectrolyte for wastewater agricultural reuse, Desal. Water Treat., 140 (2019) 231–244.
  28. M.C. He, L. Wang, P.P. Chen, Z.L. Zhou, J. Wang, S. Miao, C. Huang, Research on flocculation-advanced oxidation coupling treatment in kitchen waste pressed filtration water, Fresenius Environ. Bull., 31 (2022) 4152–4158.
  29. C. Wang, F. Liu, W.H. Hu, L. Li, R.H. Zhao, The performance of modified vermiculite flocculant, J. Tianjin Univ. Sci. Technol., 33 (2018) 49–53 (in Chinese).
  30. Z. Yang, Y.B. Shang, Y.B. Lu, Y.C. Chen, Huang, A.M. Chen, Y.X. Jiang, W. Gu, X.Z. Qian, H. Yang, R.S. Cheng, Flocculation properties of biodegradable amphoteric chitosan-based flocculants, Chem. Eng. J., 172 (2011) 287–295.
  31. H. Liao, H. Deng, Z.M. Su, A.M. Zeng, Enhanced coagulation process of montmorillonite powder combined with anionic polyacrylamide to treat extremely low turbidity water, J. Munic. Technol., 40 (2022) 171–174 (in Chinese).
  32. E.A. Lopez-Maldonado, M.T. Oropeza-Guzman, J.L. Jurado-Baizaval, A. Ochoa-Teran, Coagulation–flocculation mechanisms in wastewater treatment plants through zeta potential measurements, J. Hazard. Mater., 279 (2014) 1–10.
  33. S.S. Dryabina, M.S. Rudenko, Y.V. Shulevich, A.V. Navrotskii, I.A. Novakov, Specifics of kaolin dispersion flocculation due to a polyelectrolyte complex formation on particle surface, Colloid. Polym. Sci., 298 (2020) 519–533.
  34. L.J. Wang, F.F. Min, J. Chen, T. Wang, Z. Zhou, Study of flocculation performance and mechanism of ultrafine montmorillonite particles with NPAM, Physicochem. Probl. Miner. Process., 58 (2022) 147452, doi: 10.37190/ppmp/147790.
  35. A. Rabiee, A. Ershad-Langroudi, M.E. Zeynali, A survey on cationic polyelectrolytes and their applications: acrylamide derivatives, Rev. Chem. Eng., 31 (2015) 239–261.