References

  1. S. Ahuja, Ed., Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries, Elsevier, United States of America, 2018.
  2. K. Li, Z. Zheng, Y. Li, Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation, J. Hazard. Mater., 181 (2010) 440–447.
  3. R. Jiang, J. Tian, H. Zheng, J. Qi, S. Sun, X. Li, A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution, J. Environ. Manage., 155 (2015) 24–30.
  4. M.A. Elias, T. Hadibarata, P. Sathishkumar, Modified oil palm industry solid waste as a potential adsorbent for lead removal, Environ. Chem. Ecotoxicol., 3 (2021) 1–7.
  5. F. Lyu, S. Niu, L. Wang, R. Liu, W. Sun, D. He, Efficient removal of Pb(II) ions from aqueous solution by modified red mud, J. Hazard. Mater., 406 (2021) 124678, doi: 10.1016/j.jhazmat.2020.124678.
  6. R.V. Hemavathy, A. Saravanan, P. Senthil Kumar, D.-V.N. Vo, S. Karishma, S. Jeevanantham, Adsorptive removal of Pb(II) ions onto surface modified adsorbents derived from Cassia fistula seeds: optimization and modelling study, Chemosphere, 283 (2021) 131276, doi: 10.1016/j.chemosphere.2021.131276.
  7. R. Jayasree, P. Senthil Kumar, A. Saravanan, R.V. Hemavathy, P.R. Yaashikaa, P. Arthi, J. Shreshta, S. Jeevanantham, S. Karishma, M.V. Arasu, N.A. Al-Dhabi, K.C. Choi, Sequestration of toxic Pb(II) ions using ultrasonic modified agro waste: adsorption mechanism and modelling study, Chemosphere, 285 (2021) 131502, doi: 10.1016/j.chemosphere.2021.131502.
  8. S.M. Salman, M. Zahoor, A. Majeed, M. Wahab, D. Shahwar, S.N. Shah, E. Khan, Effective removal of Cd(II), Pb(II) and Cr(VI) from aqueous solution using Bauhinia variegata leaves after chemical modifications, Desal. Water Treat., 220 (2021) 182–191.
  9. K.H. Kamal, M.S. Attia, N.S. Ammar, E.M. Abou-Taleb, Kinetics and isotherms of lead ions removal from wastewater using modified corncob nanocomposite, Inorg. Chem. Commun., 130 (2021) 108742, doi: 10.1016/j.inoche.2021.108742.
  10. H. Asadollahzadeh, M. Ghazizadeh, M. Manzari, Developing a magnetic nanocomposite adsorbent based on carbon quantum dots prepared from pomegranate peel for the removal of Pb(II) and Cd(II) ions from aqueous solution, Anal. Methods Environ. Chem. J., 4 (2021) 33–46.
  11. H. Çelebi, G. Gök, O. Gök, Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium(II), nickel(II), and zinc(II) heavy metal ions, Sci. Rep., 10 (2020) 17570,
    doi: 10.1038/s41598-020-74553-4.
  12. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  13. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  14. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physicochim. URSS, 12 (1940) 217–225.
  15. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal, Chem. Zentralbl., 1 (1947) 875–889.
  16. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, AlChE J., 20 (1974) 228–238.
  17. H. Chen, G. Dai, J. Zhao, A. Zhong, J. Wu, H. Yan, Removal of copper(II) ions by a biosorbent—Cinnamomum camphora leaves powder, J. Hazard. Mater., 177 (2010) 228–236.
  18. S. Sun, J. Yang, Y. Li, K. Wang, X. Li, Optimizing adsorption of Pb(II) by modified litchi pericarp using the response surface methodology, Ecotoxicol. Environ. Saf., 108 (2014) 29–35.
  19. S. Liang, X.Y. Guo, N.C. Feng, Q.H. Tian, Isotherms, kinetics and thermodynamics studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents, J. Hazard. Mater., 174 (2010) 756–762.
  20. S. Lagergren, About the theory of so-called adsorption of solute substances, Kungliga Svenska Vetenskapsakad. Handl., 24 (1898) 1–39.
  21. Y.S. Ho, G. Mckay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  22. Y.S. Ho, Removal of copper ions from aqueous solution by tree fern, Water Res., 37 (2003) 2323–2330.
  23. G.-y. Li, Y.-r. Jiang, K.-l. Huang, P. Ding, J. Chen, Preparation and properties of magnetic Fe3O4–chitosan nanoparticles, J. Alloys Compd., 466 (2008) 451–456.
  24. R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan, Cadmium and lead remediation using magnetic and
    non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods, RSC Adv., 7 (2017) 8606–8624.
  25. S. Sribharathi, P. Anitha, R. Sudhaa, K. Poornima, G. Kavitha, Cadmium(II) removal from aqueous solution using a novel magnetic nanoparticle impregnated onto Citrus hystrix leaves, Desal. Water Treat., 196 (2020) 388–401.
  26. R. Sudha, K. Srinivasan, P. Premkumar, Removal of nickel(II) from aqueous solution using Citrus limettioides peel and seed carbon, Ecotoxicol. Environ. Saf., 117 (2015) 115–123.
  27. R. Sudha, K. Srinivasan, Isotherm, kinetic, and thermodynamic studies on Ni(II) removal from aqueous solution by Citrus limettioides seed and its carbon derivative, Environ. Prog. Sustainable Energy, 34 (2015) 1384–1395.
  28. H. Abdulrazzaq, H. Jol, A. Husni, R. Abu-Bakr, Characterization and stabilisation of biochars obtained from empty fruit funch, wood, and rice husk, BioResources, 9 (2014) 2888–2898.
  29. N. Elboughdiri, The use of natural zeolite to remove heavy metals Cu(II), Pb(II) and Cd(II), from industrial wastewater, Cogent Eng., 7 (2020) 1782623, doi: 10.1080/23311916.2020.1782623.
  30. F. Ma, B. Zhao, J. Diao, Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution, Water Sci. Technol., 74 (2016) 1335–1345.
  31. T.K. Sen, M. Mohammod, S. Maitra, B.K. Dutta, Removal of cadmium from aqueous solution using castor seed hull: a kinetic and equilibrium study, Clean – Soil Air Water, 38 (2010) 850–858.
  32. M. Mohammod, T.K. Sen, S. Maitra, B.K. Dutta, Removal of Zn2+ from aqueous solution using castor seed hull, Water Air Soil Pollut., 215 (2011) 609–620.
  33. K.G. Bhattacharyya, S.S. Gupta, Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) from water on montmorillonite: influence of acid activation, J. Colloid Interface Sci., 310 (2007) 411–424.
  34. J.N. Edokpayi, J.O. Odiyo, T.A.M. Msagati, E.O. Popoola, A novel approach for the removal of lead(II) ion from wastewater using mucilaginous leaves of Diceriocaryum eriocarpum plant, Sustainability, 7 (2015) 14026–14041.
  35. I.K. Rind, N. Memon, M.Y. Khuhawar, M.F. Lanjwani, Thermally activated mango peels hydrochar for fixed-bed continuous flow decontamination of Pb(II) ions from aqueous solution, Int. J. Environ. Sci. Technol., 19 (2022) 2835–2850.
  36. F.J. Alguacil, L. Alcaraz, I. García-Díaz, F.A. López, Removal of Pb2+ in wastewater via adsorption onto an activated carbon produced from winemaking waste, Metals, 8 (2018) 697, doi: 10.3390/met8090697.
  37. T.V. Tran, Q.T. Phuong Bui, T.D. Nguyen, N.T.H. Le, L.G. Bach, A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology, Adsorpt. Sci. Technol., 35 (2017) 72–85.
  38. W. Kim, R. Singh, Modified oyster waste shells as a value-added sorbent for lead removal from water, Bull. Environ. Contam. Toxicol., 108 (2022) 518–525.
  39. B.A. Ezeonuegbu, M.D. Abdulahi, C.M.Z. Whong, J.W. Sohunago, A. Athanasios, S.T. Elazab, Q. Naeem, C.A. Yaro, G.E.S. Batiha, Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: biosorption, equilibrium isotherms, kinetics and desorption studies, Biotechnol. Rep., 30 (2021) e00614, doi: 10.1016/j.btre.2021.e00614.
  40. I. Lung, M. Stan, O. Opris, M.-L. Soran, M. Senila, M. Stefan, Removal of lead(II), cadmium(II), and arsenic(III) from aqueous solution using magnetite nanoparticles prepared by green synthesis with Box–Behnken design, Anal. Lett., 51 (2018) 2519–2531.
  41. H. Sultan, N. Ahmed, M. Mubashir, S. Danish, Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar, Sci. Rep., 10 (2020) 595, doi: 10.1038/s41598-020-57535-4.
  42. G.A. Chávez-Prado, A.B. Benavides-García, L.A. Zambrano-Intriago, N.R. Maddela, L.S. Quiroz-Fernández, R.J. Baquerizo-Crespo, J.M. Rodríguez-Díaz, Novel application of tagua shell (Phytelephas aequatorialis) as adsorbent material for the removal of Pb(II) ions: kinetics, equilibrium, and thermodynamics of the process, Sustainability, 14 (2022) 1309, doi: 10.3390/su14031309.
  43. S.M. Beyan, T.A. Ambio, V.P. Sundramurthy, C. Gomadurai, A.A. Getahun, Adsorption phenomenon for removal of Pb(II) via Teff straw based activated carbon prepared by microwaveassisted pyrolysis: process modelling, statistical optimisation, isotherm, kinetics, and thermodynamic studies, Int. J. Environ. Anal. Chem., (2022), doi: 10.1080/03067319.2022.2026942.
  44. J. Acharya, J.N. Sahu, C.R. Mohanty, B.C. Meikap, Removal of lead(II) from wastewater by activated carbon developed from tamarind wood by zinc chloride activation, Chem. Eng. J., 149 (2009) 249–262.
  45. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–60.
  46. A.K. Bhattacharya, C.J. Venkobachar, Removal of cadmium(II) by low cost adsorbents, J. Environ. Eng. Div.-ASCE, 110 (1984) 110–122.
  47. L.D. Michelson, P.G. Gideon, E.G. Pace, L.H. Kutal, US, Department of Industry, Office of Water Research and Technology, Bulletin No. 74, 1975.
  48. S. Malathi, R. Sudha, P. Anitha, P. Maheswari, M. Gomathi, K. Poornima, Removal efficiency of cadmium(II) from electroplating wastewater by chemically modified cottonseed cake carbon, Desal. Water Treat., 196 (2020) 377–387.