References
- M. Khodadadi, M.H. Ehrampoush, M.T. Ghaneian,
A. Allahresani, A.H. Mahvi, Synthesis and characterizations of
FeNi3@SiO2@TiO2 nanocomposite and its application in photocatalytic
degradation of tetracycline in simulated wastewater,
J. Mol. Liq., 255 (2018) 224–232.
- A. Tiwari, A. Shukla, D. Tiwari, S.M. Lee, Nanocomposite
thin films Ag0(NP)/TiO2 in the efficient removal of micropollutants
from aqueous solutions: a case study of tetracycline
and sulfamethoxazole removal, J. Environ. Manage., 220 (2018)
96–108.
- H.U. Rasheed, X. Lv, W. Wei, D.K. Sam, N. Ullah, J. Xie, W. Zhu,
Highly efficient photocatalytic degradation of the tetracycline
hydrochloride on the α-Fe2O3@CN composite under the visible
light, J. Environ. Chem. Eng., 7 (2019) 103322, doi: 10.1016/j.jece.2019.103322.
- W. Xiong, G. Zeng, Z. Yang, Y. Zhou, C. Zhang, M. Cheng, Y. Liu,
L. Hu, J. Wan, C. Zhou, Adsorption of tetracycline antibiotics
from aqueous solutions on nanocomposite multi-walled carbon
nanotube functionalized MIL-53 (Fe) as new adsorbent, Sci.
Total Environ., 627 (2018) 235–244.
- H. Zhang, M. Shi, M. Xia, F. Zhao, The adsorption mechanism
of montmorillonite for different tetracycline species at different
pH conditions: the novel visual analysis of intermolecular
interactions, Water Air Soil Pollut., 232 (2021) 1–15.
- L. Xu, J. Dai, J. Pan, X. Li, P. Huo, Y. Yan, X. Zou, R. Zhang,
Performance of rattle-type magnetic mesoporous silica spheres
in the adsorption of single and binary antibiotics, Chem. Eng. J.,
174 (2011) 221–230.
- B. Debnath, M. Majumdar, M. Bhowmik, K.L. Bhowmik,
A. Debnath, D.N. Roy, The effective adsorption of tetracycline
onto zirconia nanoparticles synthesized by novel microbial
green technology, J. Environ. Manage., 261 (2020) 110235,
doi: 10.1016/j.jenvman.2020.110235.
- X. Bai, Y.J. Wang, Y. Li, X.J. Wang, Adsorption–photocatalytical
remediation for series of tetracycline contaminants with BiOCl–CdS composite under simulated sunlight, J. Taiwan Inst. Chem.
Eng., 104 (2019) 94–105.
- C. Wang, R. Sun, R. Huang, H. Wang, Superior Fenton-like
degradation of tetracycline by iron loaded graphitic carbon
derived from microplastics: synthesis, catalytic performance,
and mechanism, Sep. Purif. Technol., 270 (2021) 118773, doi:
10.1016/j.seppur.2021.118773.
- M. Aram, M. Farhadian, A.R.S. Nazar, S. Tangestaninejad,
P. Eskandari, B.-H. Jeon, Metronidazole and cephalexin
degradation by using of urea/TiO2/ZnFe2O4/clinoptiloite
catalyst under visible-light irradiation and ozone injection,
J. Mol. Liq., 304 (2020) 112764, doi: 10.1016/j.molliq.2020.112764.
- Z. He, X. Wang, Y. Luo, Y. Zhu, X. Lai, J. Shang, J. Chen,
Q. Liao, Effects of suspended particulate matter from natural
lakes in conjunction with coagulation to tetracycline removal
from water, Chemosphere, 277 (2021) 130327, doi: 10.1016/j.chemosphere.2021.130327.
- M. Farzadkia, E. Bazrafshan, A. Esrafili, J.-K. Yang, M. Shirzad-Siboni, Photocatalytic degradation of metronidazole with
illuminated TiO2 nanoparticles, J. Environ. Health Sci. Eng.,
13 (2015) 1–8.
- N. Nasseh, B. Barikbin, L. Taghavi, M.A. Nasseri, Adsorption
of metronidazole antibiotic using a new magnetic
nanocomposite from simulated wastewater (isotherm, kinetic
and thermodynamic studies), Composites, Part B, 159 (2019)
146–156.
- M. Yuan, C. Li, B. Zhang, J. Wang, J. Zhu, J. Ji, Y. Ma, A mild
and one-pot method to activate lignin-derived biomass by
using boric acid for aqueous tetracycline antibiotics removal
in water, Chemosphere, 280 (2021) 130877, doi: 10.1016/j.chemosphere.2021.130877.
- S. Liu, M. Pan, Z. Feng, Y. Qin, Y. Wang, L. Tan, T. Sun, Ultrahigh
adsorption of tetracycline antibiotics on garlic skinderived
porous biomass carbon with high surface area, New J.
Chem., 44 (2020) 1097–1106.
- O. Qafoku, C.I. Pearce, A. Neumann, L. Kovarik, M. Zhu,
E.S. Ilton, M.E. Bowden, C.T. Resch, B.W. Arey, E. Arenholz,
Tc(VII) and Cr(VI) interaction with naturally reduced
ferruginous smectite from a redox transition zone, Environ. Sci.
Technol., 51 (2017) 9042–9052.
- C.H. Nguyen, C.-C. Fu, D.-Y. Kao, T.T. Van Tran, R.-S. Juang,
Adsorption removal of tetracycline from water using
poly(vinylidene fluoride)/polyaniline-montmorillonite mixed
matrix membranes, J. Taiwan Inst. Chem. Eng., 112 (2020)
259–270.
- S. Guo, W. Yang, L. You, J. Li, J. Chen, K. Zhou, Simultaneous
reduction of Cr(VI) and degradation of tetracycline
hydrochloride by a novel iron-modified rectorite composite
through heterogeneous photo-Fenton processes, Chem. Eng. J.,
393 (2020) 124758, doi: 10.1016/j.cej.2020.124758.
- Y. Shi, Z. Yang, B. Wang, H. An, Z. Chen, H. Cui, Adsorption
and photocatalytic degradation of tetracycline hydrochloride
using a palygorskite-supported Cu2O–TiO2 composite, Appl.
Clay Sci., 119 (2016) 311–320.
- X. Tang, Y. Huang, Q. He, Y. Wang, H. Zheng, Y. Hu, Adsorption
of tetracycline antibiotics by nitrilotriacetic acid modified
magnetic chitosan-based microspheres from aqueous solutions,
Environ. Technol. Innovation, 24 (2021) 101895, doi: 10.1016/j.eti.2021.101895.
- M. Cao, X. Liu, W. Wang, M. Gao, H. Yang, Bifunctional twodimensional
copper-aluminum modified filter paper composite
for efficient tetracycline removal: synergy of adsorption and
reusability by degradation, Chemosphere, 287 (2022) 132031,
doi: 10.1016/j.chemosphere.2021.132031.
- K. Khaledi, G.M. Valdes Labrada, J. Soltan, B. Predicala,
M. Nemati, Adsorptive removal of tetracycline and lincomycin
from contaminated water using magnetized activated carbon,
J. Environ. Chem. Eng., 9 (2021) 105998, doi: 10.1016/j.jece.2021.105998.
- C. Chen, X. Feng, S. Yao, Ionic liquid-multi walled carbon
nanotubes composite tablet for continuous adsorption of
tetracyclines and heavy metals, J. Cleaner Prod., 286 (2021)
124937, doi: 10.1016/j.jclepro.2020.124937.
- N. Nasseh, F.S. Arghavan, N. Daglioglu, A. Asadi, Fabrication
of novel magnetic CuS/Fe3O4/GO nanocomposite for organic
pollutant degradation under visible light irradiation, Environ.
Sci. Pollut. Res., 28 (2021) 19222–19233.
- D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco,
C.U. Pittman Jr., Development of magnetic activated carbon
from almond shells for trinitrophenol removal from water,
Chem. Eng. J., 172 (2011) 1111–1125.
- Q. Liu, Y. Zheng, L. Zhong, X. Cheng, Removal of tetracycline
from aqueous solution by a Fe3O4 incorporated PAN electrospun
nanofiber mat, J. Environ. Sci. (China), 28 (2015) 29–36.
- B. Kakavandi, A. Jonidi, R. Rezaei, S. Nasseri, A. Ameri,
A. Esrafily, Synthesis and properties of Fe3O4-activated
carbon magnetic nanoparticles for removal of aniline from
aqueous solution: equilibrium, kinetic and thermodynamic
studies, Iran. J. Environ. Health Sci. Eng., 10 (2013) 1–9,
doi: 10.1186/1735-2746-10-19.
- N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, Synthesis
and characterizations of a novel FeNi3/SiO2/CuS magnetic
nanocomposite for photocatalytic degradation of tetracycline in
simulated wastewater, J. Cleaner Prod., 179 (2018) 42–54.
- D. Ayodhya, G. Veerabhadram, Facile fabrication, characterization
and efficient photocatalytic activity of surfactant free
ZnS, CdS and CuS nanoparticles, J. Sci.: Adv. Mater. Devices,
4 (2019) 381–391.
- F. Mbarki, T. Selmi, A. Kesraoui, M. Seffen, Low-cost activated
carbon preparation from corn stigmata fibers chemically
activated using H3PO4, ZnCl2 and KOH: study of methylene blue
adsorption, stochastic isotherm and fractal kinetic, Ind. Crops
Prod., 178 (2022) 114546, doi: 10.1016/j.indcrop.2022.114546.
- M. Wei, F. Marrakchi, C. Yuan, X. Cheng, D. Jiang, F.F. Zafar,
Y. Fu, S. Wang, Adsorption modeling, thermodynamics, and
DFT simulation of tetracycline onto mesoporous and high surface
area NaOH-activated macroalgae carbon, J. Hazard.
Mater., 425 (2022) 127887, doi: 10.1016/j.jhazmat.2021.127887.
- I. Özüdoğru, Z. Yigit Avdan, S. Balbay, A novel carbon-based
material recycled from end-of-life tires (ELTs) for separation
of organic dyes to understand kinetic and isotherm behavior,
Sep. Sci. Technol., 57 (2022) 2024–2040.
- S. Kim, F. Gholamirad, M. Yu, C.M. Park, A. Jang, M. Jang,
N. Taheri-Qazvini, Y. Yoon, Enhanced adsorption performance
for selected pharmaceutical compounds by sonicated Ti3C2TX
MXene, Chem. Eng. J., 406 (2021) 126789, doi: 10.1016/j.
cej.2020.126789.
- N. Nasseh, L. Taghavi, B. Barikbin, A.R. Harifi-Mood, The
removal of Cr(VI) from aqueous solution by almond green hull
waste material: kinetic and equilibrium studies, J. Water Reuse
Desal., 7 (2016) 449–460.
- N. Nasseh, R. Khosravi, G.A. Rumman, M. Ghadirian,
H. Eslami, M. Khoshnamvand, T.J. Al-Musawi, A. Khosravi,
Adsorption of Cr(VI) ions onto powdered activated carbon
synthesized from Peganum harmala seeds by ultrasonic waves
activation, Environ. Technol. Innovation, 21 (2021) 101277,
doi: 10.1016/j.eti.2020.101277.
- L.R. de Carvalho Costa, L. de Moraes Ribeiro, G.E.N. Hidalgo,
L.A. Féris, Evaluation of efficiency and capacity of thermal,
chemical and ultrasonic regeneration of tetracycline exhausted
activated carbon, Environ. Technol., 43 (2022) 907–917.
- N. Nasseh, R. Khosravi, N.S. Mazari Moghaddam, S. Rezania,
Effect of UVC and UVA photocatalytic processes on tetracycline
removal using CuS-coated magnetic activated carbon nanocomposite:
a comparative study, Int. J. Environ. Res. Public
Health, 18 (2021) 11163, doi: 10.3390/ijerph182111163.
- S. Suganya, Influence of ultrasonic waves on preparation of
active carbon from coffee waste for the reclamation of effluents
containing Cr(VI) ions, J. Ind. Eng. Chem., 60 (2018) 418–430.
- N. Mohammadi, A. Allahresani, A. Naghizadeh, Novel fibrous
silica-copper sulfide nanocomposite (KCC1-CuS): synthesis
and enhanced photocatalytic degradation of humic acid, (2021),
doi: 10.21203/rs.3.rs-157129/v1.
- Q. Liu, L.-B. Zhong, Q.-B. Zhao, C. Frear, Y.-M. Zheng, Synthesis
of Fe3O4/polyacrylonitrile composite electrospun nanofiber
mat for effective adsorption of tetracycline, ACS Appl. Mater.
Interfaces, 7 (2015) 14573–14583.
- Y. Wang, H. Zhang, J. Zhang, C. Lu, Q. Huang, J. Wu, F. Liu,
Degradation of tetracycline in aqueous media by ozonation in
an internal loop-lift reactor, J. Hazard. Mater., 192 (2011) 35–43.
- M. Ahmed, M.A. Islam, M. Asif, B. Hameed, Human hairderived
high surface area porous carbon material for the
adsorption isotherm and kinetics of tetracycline antibiotics,
Bioresour. Technol., 243 (2017) 778–784.
- Y. Chen, F. Wang, L. Duan, H. Yang, J. Gao, Tetracycline
adsorption onto rice husk ash, an agricultural waste: its kinetic
and thermodynamic studies, J. Mol. Liq., 222 (2016) 487–494.
- D. Fernández-Calviño, A. Bermúdez-Couso, M. Arias-Estévez,
J.C. Nóvoa-Muñoz, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, A. Núñez-Delgado, Kinetics of tetracycline,
oxytetracycline, and chlortetracycline adsorption and desorption
on two acid soils, Environ. Sci. Pollut. Res., 22 (2015) 425–433.
- N. Samira, H. Mohsen, A. Vali, R. Omid, F. Mehdi,
F. Mohammadi-moghadam, N. Heshmatollah, B. Goudarzi,
D. Kavoos, Preparation, characterization and Cr(VI) adsorption
evaluation of NaOH-activated carbon produced from Date
Press Cake; an agro-industrial waste, Bioresour. Technol.,
258 (2018) 48–56.
- X. Zhang, X. Lin, Y. He, Y. Chen, X. Luo, R. Shang, Study
on adsorption of tetracycline by Cu-immobilized alginate
adsorbent from water environment, Int. J. Biol. Macromol.,
124 (2019) 418–428.
- Z. Zhang, K. Sun, B. Gao, G. Zhang, X. Liu, Y. Zhao, Adsorption
of tetracycline on soil and sediment: effects of pH and the
presence of Cu(II), J. Hazard. Mater., 190 (2011) 856–862.
- S.M. Al-Jubouri, S.M. Holmes, Immobilization of cobalt
ions using hierarchically porous 4A zeolite-based carbon
composites: ion-exchange and solidification, J. Water Process
Eng., 33 (2020) 101059, doi: 10.1016/j.jwpe.2019.101059.
- P. Chitra, A. Muthusamy, R. Jayaprakash, E.R. Kumar, Effect
of ultrasonication on particle size and magnetic properties of
polyaniline NiCoFe2O4 nanocomposites, J. Magn. Magn. Mater.,
366 (2014) 55–63.
- M. Kamranifar, A. Allahresani, A. Naghizadeh, Synthesis
and characterizations of a novel CoFe2O4@CuS magnetic
nanocomposite and investigation of its efficiency for photocatalytic
degradation of penicillin G antibiotic in simulated
wastewater, J. Hazard. Mater., 366 (2019) 545–555.
- C. Anyika, N.A.M. Asri, Z.A. Majid, A. Yahya, J. Jaafar, Synthesis
and characterization of magnetic activated carbon developed
from palm kernel shells, Nanotechnol. Environ. Eng., 2 (2017)
1–25.
- T. Depci, Comparison of activated carbon and iron impregnated
activated carbon derived from Gölbaşı lignite to remove
cyanide from water, Chem. Eng. J., 181 (2012) 467–478.
- S.M. Mirsoleimani-Azizi, P. Setoodeh, S. Zeinali,
M.R. Rahimpour, Tetracycline antibiotic removal from aqueous
solutions by MOF-5: adsorption isotherm, kinetic and thermodynamic
studies, J. Environ. Chem. Eng., 6 (2018) 6118–6130.
- J.H. Kwon, L.D. Wilson, R. Sammynaiken, Synthesis and
characterization of magnetite and activated carbon binary
composites, Synth. Met., 197 (2014) 8–17.
- S.C. Rodrigues, M.C. Silva, J.A. Torres, M.L. Bianchi, Use of
magnetic activated carbon in a solid phase extraction procedure
for analysis of 2,4-dichlorophenol in water samples,
Water Air Soil Pollut., 231 (2020) 1–13.
- K.K. Hammud, N.M. Imra, M.H. Khalil, N.A.H. Akosh,
F.M. Hamza, D.E. Zanad, Preparation and characterization of
magnetic activated carbon as non-hemolytic material, AIP Conf.
Proc., 2372 (2021) 130021, doi: 10.1063/5.0065417.
- T. Ahamad, Mu. Naushad, T. Al-Shahrani, N. Al-Hokbany,
S.M. Alshehri, Preparation of chitosan based magnetic nanocomposite
for tetracycline adsorption: kinetic and thermodynamic
studies, Int. J. Biol. Macromol., 147 (2020) 258–267.
- H. Liu, X. Wang, G. Zhai, J. Zhang, C. Zhang, N. Bao, C. Cheng,
Preparation of activated carbon from lotus stalks with the mixture
of phosphoric acid and pentaerythritol impregnation and its
application for Ni(II) sorption, Chem. Eng. J., 209 (2012) 155–162.
- J.W. Brown, P.S. Ramesh, D. Geetha, Fabrication of mesoporous
iron (Fe) doped copper sulfide (CuS) nanocomposite in the
presence of a cationic surfactant via mild hydrothermal method
for supercapacitors, Mater. Res. Express, 5 (2018) 024007,
doi: 10.1088/2053-1591/aaad55.
- N. Nasseh, B. Barikbin, L. Taghavi, Photocatalytic degradation
of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic
nanocomposite under simulated solar irradiation: efficiency,
stability, kinetic and pathway study, Environ. Technol.
Innovation, 20 (2020) 101035, doi: 10.1016/j.eti.2020.101035.
- A. Dehghan, M.H. Dehghani, R. Nabizadeh, N. Ramezanian,
M. Alimohammadi, A.A. Najafpoor, Adsorption and visiblelight
photocatalytic degradation of tetracycline hydrochloride
from aqueous solutions using 3D hierarchical mesoporous
BiOI: synthesis and characterization, process optimization,
adsorption and degradation modeling, Chem. Eng. Res. Des.,
129 (2018) 217–230.
- M. Erşan, E. Bağda, E. Bağda, Investigation of kinetic and
thermodynamic characteristics of removal of tetracycline with
sponge like, tannin based cryogels, Colloids Surf., B, 104 (2013)
75–82.
- Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su,
Adsorption and removal of tetracycline antibiotics from
aqueous solution by graphene oxide, J. Colloid Interface Sci.,
368 (2012) 540–546.
- H. Liu, G. Xu, G. Li, Preparation of porous biochar based on
pharmaceutical sludge activated by NaOH and its application
in the adsorption of tetracycline, J. Colloid Interface Sci.,
587 (2021) 271–278.
- H. Wu, H. Xie, G. He, Y. Guan, Y. Zhang, Effects of the
pH and anions on the adsorption of tetracycline on ironmontmorillonite,
Appl. Clay Sci., 119 (2016) 161–169.
- M.H. Marzbali, M. Esmaieli, H. Abolghasemi, M.H. Marzbali,
Tetracycline adsorption by H3POs-activated carbon produced
from apricot nut shells: a batch study, Process Saf. Environ.
Prot., 102 (2016) 700–709.