References

  1. M. Khodadadi, M.H. Ehrampoush, M.T. Ghaneian, A. Allahresani, A.H. Mahvi, Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photocatalytic degradation of tetracycline in simulated wastewater, J. Mol. Liq., 255 (2018) 224–232.
  2. A. Tiwari, A. Shukla, D. Tiwari, S.M. Lee, Nanocomposite thin films Ag0(NP)/TiO2 in the efficient removal of micropollutants from aqueous solutions: a case study of tetracycline and sulfamethoxazole removal, J. Environ. Manage., 220 (2018) 96–108.
  3. H.U. Rasheed, X. Lv, W. Wei, D.K. Sam, N. Ullah, J. Xie, W. Zhu, Highly efficient photocatalytic degradation of the tetracycline hydrochloride on the α-Fe2O3@CN composite under the visible light, J. Environ. Chem. Eng., 7 (2019) 103322, doi: 10.1016/j.jece.2019.103322.
  4. W. Xiong, G. Zeng, Z. Yang, Y. Zhou, C. Zhang, M. Cheng, Y. Liu, L. Hu, J. Wan, C. Zhou, Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent, Sci. Total Environ., 627 (2018) 235–244.
  5. H. Zhang, M. Shi, M. Xia, F. Zhao, The adsorption mechanism of montmorillonite for different tetracycline species at different pH conditions: the novel visual analysis of intermolecular interactions, Water Air Soil Pollut., 232 (2021) 1–15.
  6. L. Xu, J. Dai, J. Pan, X. Li, P. Huo, Y. Yan, X. Zou, R. Zhang, Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics, Chem. Eng. J., 174 (2011) 221–230.
  7. B. Debnath, M. Majumdar, M. Bhowmik, K.L. Bhowmik, A. Debnath, D.N. Roy, The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology, J. Environ. Manage., 261 (2020) 110235, doi: 10.1016/j.jenvman.2020.110235.
  8. X. Bai, Y.J. Wang, Y. Li, X.J. Wang, Adsorption–photocatalytical remediation for series of tetracycline contaminants with BiOCl–CdS composite under simulated sunlight, J. Taiwan Inst. Chem. Eng., 104 (2019) 94–105.
  9. C. Wang, R. Sun, R. Huang, H. Wang, Superior Fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: synthesis, catalytic performance, and mechanism, Sep. Purif. Technol., 270 (2021) 118773, doi: 10.1016/j.seppur.2021.118773.
  10. M. Aram, M. Farhadian, A.R.S. Nazar, S. Tangestaninejad, P. Eskandari, B.-H. Jeon, Metronidazole and cephalexin degradation by using of urea/TiO2/ZnFe2O4/clinoptiloite catalyst under visible-light irradiation and ozone injection, J. Mol. Liq., 304 (2020) 112764, doi: 10.1016/j.molliq.2020.112764.
  11. Z. He, X. Wang, Y. Luo, Y. Zhu, X. Lai, J. Shang, J. Chen, Q. Liao, Effects of suspended particulate matter from natural lakes in conjunction with coagulation to tetracycline removal from water, Chemosphere, 277 (2021) 130327, doi: 10.1016/j.chemosphere.2021.130327.
  12. M. Farzadkia, E. Bazrafshan, A. Esrafili, J.-K. Yang, M. Shirzad-Siboni, Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles, J. Environ. Health Sci. Eng., 13 (2015) 1–8.
  13. N. Nasseh, B. Barikbin, L. Taghavi, M.A. Nasseri, Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies), Composites, Part B, 159 (2019) 146–156.
  14. M. Yuan, C. Li, B. Zhang, J. Wang, J. Zhu, J. Ji, Y. Ma, A mild and one-pot method to activate lignin-derived biomass by using boric acid for aqueous tetracycline antibiotics removal in water, Chemosphere, 280 (2021) 130877, doi: 10.1016/j.chemosphere.2021.130877.
  15. S. Liu, M. Pan, Z. Feng, Y. Qin, Y. Wang, L. Tan, T. Sun, Ultrahigh adsorption of tetracycline antibiotics on garlic skinderived porous biomass carbon with high surface area, New J. Chem., 44 (2020) 1097–1106.
  16. O. Qafoku, C.I. Pearce, A. Neumann, L. Kovarik, M. Zhu, E.S. Ilton, M.E. Bowden, C.T. Resch, B.W. Arey, E. Arenholz, Tc(VII) and Cr(VI) interaction with naturally reduced ferruginous smectite from a redox transition zone, Environ. Sci. Technol., 51 (2017) 9042–9052.
  17. C.H. Nguyen, C.-C. Fu, D.-Y. Kao, T.T. Van Tran, R.-S. Juang, Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonite mixed matrix membranes, J. Taiwan Inst. Chem. Eng., 112 (2020) 259–270.
  18. S. Guo, W. Yang, L. You, J. Li, J. Chen, K. Zhou, Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes, Chem. Eng. J., 393 (2020) 124758, doi: 10.1016/j.cej.2020.124758.
  19. Y. Shi, Z. Yang, B. Wang, H. An, Z. Chen, H. Cui, Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O–TiO2 composite, Appl. Clay Sci., 119 (2016) 311–320.
  20. X. Tang, Y. Huang, Q. He, Y. Wang, H. Zheng, Y. Hu, Adsorption of tetracycline antibiotics by nitrilotriacetic acid modified magnetic chitosan-based microspheres from aqueous solutions, Environ. Technol. Innovation, 24 (2021) 101895, doi: 10.1016/j.eti.2021.101895.
  21. M. Cao, X. Liu, W. Wang, M. Gao, H. Yang, Bifunctional twodimensional copper-aluminum modified filter paper composite for efficient tetracycline removal: synergy of adsorption and reusability by degradation, Chemosphere, 287 (2022) 132031, doi: 10.1016/j.chemosphere.2021.132031.
  22. K. Khaledi, G.M. Valdes Labrada, J. Soltan, B. Predicala, M. Nemati, Adsorptive removal of tetracycline and lincomycin from contaminated water using magnetized activated carbon, J. Environ. Chem. Eng., 9 (2021) 105998, doi: 10.1016/j.jece.2021.105998.
  23. C. Chen, X. Feng, S. Yao, Ionic liquid-multi walled carbon nanotubes composite tablet for continuous adsorption of tetracyclines and heavy metals, J. Cleaner Prod., 286 (2021) 124937, doi: 10.1016/j.jclepro.2020.124937.
  24. N. Nasseh, F.S. Arghavan, N. Daglioglu, A. Asadi, Fabrication of novel magnetic CuS/Fe3O4/GO nanocomposite for organic pollutant degradation under visible light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 19222–19233.
  25. D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pittman Jr., Development of magnetic activated carbon from almond shells for trinitrophenol removal from water, Chem. Eng. J., 172 (2011) 1111–1125.
  26. Q. Liu, Y. Zheng, L. Zhong, X. Cheng, Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat, J. Environ. Sci. (China), 28 (2015) 29–36.
  27. B. Kakavandi, A. Jonidi, R. Rezaei, S. Nasseri, A. Ameri, A. Esrafily, Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies, Iran. J. Environ. Health Sci. Eng., 10 (2013) 1–9, doi: 10.1186/1735-2746-10-19.
  28. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater, J. Cleaner Prod., 179 (2018) 42–54.
  29. D. Ayodhya, G. Veerabhadram, Facile fabrication, characterization and efficient photocatalytic activity of surfactant free ZnS, CdS and CuS nanoparticles, J. Sci.: Adv. Mater. Devices, 4 (2019) 381–391.
  30. F. Mbarki, T. Selmi, A. Kesraoui, M. Seffen, Low-cost activated carbon preparation from corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: study of methylene blue adsorption, stochastic isotherm and fractal kinetic, Ind. Crops Prod., 178 (2022) 114546, doi: 10.1016/j.indcrop.2022.114546.
  31. M. Wei, F. Marrakchi, C. Yuan, X. Cheng, D. Jiang, F.F. Zafar, Y. Fu, S. Wang, Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high surface area NaOH-activated macroalgae carbon, J. Hazard. Mater., 425 (2022) 127887, doi: 10.1016/j.jhazmat.2021.127887.
  32. I. Özüdoğru, Z. Yigit Avdan, S. Balbay, A novel carbon-based material recycled from end-of-life tires (ELTs) for separation of organic dyes to understand kinetic and isotherm behavior, Sep. Sci. Technol., 57 (2022) 2024–2040.
  33. S. Kim, F. Gholamirad, M. Yu, C.M. Park, A. Jang, M. Jang, N. Taheri-Qazvini, Y. Yoon, Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene, Chem. Eng. J., 406 (2021) 126789, doi: 10.1016/j. cej.2020.126789.
  34. N. Nasseh, L. Taghavi, B. Barikbin, A.R. Harifi-Mood, The removal of Cr(VI) from aqueous solution by almond green hull waste material: kinetic and equilibrium studies, J. Water Reuse Desal., 7 (2016) 449–460.
  35. N. Nasseh, R. Khosravi, G.A. Rumman, M. Ghadirian, H. Eslami, M. Khoshnamvand, T.J. Al-Musawi, A. Khosravi, Adsorption of Cr(VI) ions onto powdered activated carbon synthesized from Peganum harmala seeds by ultrasonic waves activation, Environ. Technol. Innovation, 21 (2021) 101277, doi: 10.1016/j.eti.2020.101277.
  36. L.R. de Carvalho Costa, L. de Moraes Ribeiro, G.E.N. Hidalgo, L.A. Féris, Evaluation of efficiency and capacity of thermal, chemical and ultrasonic regeneration of tetracycline exhausted activated carbon, Environ. Technol., 43 (2022) 907–917.
  37. N. Nasseh, R. Khosravi, N.S. Mazari Moghaddam, S. Rezania, Effect of UVC and UVA photocatalytic processes on tetracycline removal using CuS-coated magnetic activated carbon nanocomposite: a comparative study, Int. J. Environ. Res. Public Health, 18 (2021) 11163, doi: 10.3390/ijerph182111163.
  38. S. Suganya, Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr(VI) ions, J. Ind. Eng. Chem., 60 (2018) 418–430.
  39. N. Mohammadi, A. Allahresani, A. Naghizadeh, Novel fibrous silica-copper sulfide nanocomposite (KCC1-CuS): synthesis and enhanced photocatalytic degradation of humic acid, (2021), doi: 10.21203/rs.3.rs-157129/v1.
  40. Q. Liu, L.-B. Zhong, Q.-B. Zhao, C. Frear, Y.-M. Zheng, Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline, ACS Appl. Mater. Interfaces, 7 (2015) 14573–14583.
  41. Y. Wang, H. Zhang, J. Zhang, C. Lu, Q. Huang, J. Wu, F. Liu, Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor, J. Hazard. Mater., 192 (2011) 35–43.
  42. M. Ahmed, M.A. Islam, M. Asif, B. Hameed, Human hairderived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics, Bioresour. Technol., 243 (2017) 778–784.
  43. Y. Chen, F. Wang, L. Duan, H. Yang, J. Gao, Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies, J. Mol. Liq., 222 (2016) 487–494.
  44. D. Fernández-Calviño, A. Bermúdez-Couso, M. Arias-Estévez, J.C. Nóvoa-Muñoz, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, A. Núñez-Delgado, Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils, Environ. Sci. Pollut. Res., 22 (2015) 425–433.
  45. N. Samira, H. Mohsen, A. Vali, R. Omid, F. Mehdi, F. Mohammadi-moghadam, N. Heshmatollah, B. Goudarzi, D. Kavoos, Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste, Bioresour. Technol., 258 (2018) 48–56.
  46. X. Zhang, X. Lin, Y. He, Y. Chen, X. Luo, R. Shang, Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment, Int. J. Biol. Macromol., 124 (2019) 418–428.
  47. Z. Zhang, K. Sun, B. Gao, G. Zhang, X. Liu, Y. Zhao, Adsorption of tetracycline on soil and sediment: effects of pH and the presence of Cu(II), J. Hazard. Mater., 190 (2011) 856–862.
  48. S.M. Al-Jubouri, S.M. Holmes, Immobilization of cobalt ions using hierarchically porous 4A zeolite-based carbon composites: ion-exchange and solidification, J. Water Process Eng., 33 (2020) 101059, doi: 10.1016/j.jwpe.2019.101059.
  49. P. Chitra, A. Muthusamy, R. Jayaprakash, E.R. Kumar, Effect of ultrasonication on particle size and magnetic properties of polyaniline NiCoFe2O4 nanocomposites, J. Magn. Magn. Mater., 366 (2014) 55–63.
  50. M. Kamranifar, A. Allahresani, A. Naghizadeh, Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater, J. Hazard. Mater., 366 (2019) 545–555.
  51. C. Anyika, N.A.M. Asri, Z.A. Majid, A. Yahya, J. Jaafar, Synthesis and characterization of magnetic activated carbon developed from palm kernel shells, Nanotechnol. Environ. Eng., 2 (2017) 1–25.
  52. T. Depci, Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water, Chem. Eng. J., 181 (2012) 467–478.
  53. S.M. Mirsoleimani-Azizi, P. Setoodeh, S. Zeinali, M.R. Rahimpour, Tetracycline antibiotic removal from aqueous solutions by MOF-5: adsorption isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng., 6 (2018) 6118–6130.
  54. J.H. Kwon, L.D. Wilson, R. Sammynaiken, Synthesis and characterization of magnetite and activated carbon binary composites, Synth. Met., 197 (2014) 8–17.
  55. S.C. Rodrigues, M.C. Silva, J.A. Torres, M.L. Bianchi, Use of magnetic activated carbon in a solid phase extraction procedure for analysis of 2,4-dichlorophenol in water samples, Water Air Soil Pollut., 231 (2020) 1–13.
  56. K.K. Hammud, N.M. Imra, M.H. Khalil, N.A.H. Akosh, F.M. Hamza, D.E. Zanad, Preparation and characterization of magnetic activated carbon as non-hemolytic material, AIP Conf. Proc., 2372 (2021) 130021, doi: 10.1063/5.0065417.
  57. T. Ahamad, Mu. Naushad, T. Al-Shahrani, N. Al-Hokbany, S.M. Alshehri, Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: kinetic and thermodynamic studies, Int. J. Biol. Macromol., 147 (2020) 258–267.
  58. H. Liu, X. Wang, G. Zhai, J. Zhang, C. Zhang, N. Bao, C. Cheng, Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni(II) sorption, Chem. Eng. J., 209 (2012) 155–162.
  59. J.W. Brown, P.S. Ramesh, D. Geetha, Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors, Mater. Res. Express, 5 (2018) 024007, doi: 10.1088/2053-1591/aaad55.
  60. N. Nasseh, B. Barikbin, L. Taghavi, Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: efficiency, stability, kinetic and pathway study, Environ. Technol. Innovation, 20 (2020) 101035, doi: 10.1016/j.eti.2020.101035.
  61. A. Dehghan, M.H. Dehghani, R. Nabizadeh, N. Ramezanian, M. Alimohammadi, A.A. Najafpoor, Adsorption and visiblelight photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: synthesis and characterization, process optimization, adsorption and degradation modeling, Chem. Eng. Res. Des., 129 (2018) 217–230.
  62. M. Erşan, E. Bağda, E. Bağda, Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels, Colloids Surf., B, 104 (2013) 75–82.
  63. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  64. H. Liu, G. Xu, G. Li, Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline, J. Colloid Interface Sci., 587 (2021) 271–278.
  65. H. Wu, H. Xie, G. He, Y. Guan, Y. Zhang, Effects of the pH and anions on the adsorption of tetracycline on ironmontmorillonite, Appl. Clay Sci., 119 (2016) 161–169.
  66. M.H. Marzbali, M. Esmaieli, H. Abolghasemi, M.H. Marzbali, Tetracycline adsorption by H3POs-activated carbon produced from apricot nut shells: a batch study, Process Saf. Environ. Prot., 102 (2016) 700–709.