References

  1. S. Rajabi, A. Nasiri, M. Hashemi, Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation, Chemosphere, 286 (2022) 131872, doi: 10.1016/j. chemosphere.2021.131872.
  2. N. Aarab, A. Hsini, A. Essekri, M. Laabd, R. Lakhmiri, A. Albourine, Removal of an emerging pharmaceutical pollutant (metronidazole) using PPY-PANi copolymer: kinetics, equilibrium and DFT identification of adsorption mechanism, Groundwater Sustainable Dev., 11) 2020) 100416, doi: 10.1016/j.gsd.2020.100416.
  3. Z. Derakhshan, M. Mokhtari, F. Babaei, R. Malek Ahmadi, M.H. Ehrampoush, M. Faramarzian, Removal methods of antibiotic compounds from aqueous environments–a review, J. Environ. Health Sustainable Dev., 1 (2016) 51–74.
  4. M.J. Ahmed, S.K. Theydan, Microwave assisted preparation of microporous activated carbon from Siris seed pods for adsorption of metronidazole antibiotic, Chem. Eng. J., 214 (2013) 310–318.
  5. M. Malakootian, K. Kannan, M.A. Gharaghani, A. Dehdarirad, A. Nasiri, Y.D. Shahamat, H. Mahdizadeh, Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor, J. Environ. Chem. Eng., 7 (2019) 103457, doi: 10.1016/j.jece.2019.103457.
  6. F. Mohammadi, Z. Yavari, S. Rahimi, M. Hashemi, Artificial neural network modeling of Cr(VI) biosorption from aqueous solutions, J. Water Chem. Technol., 41 (2019) 219–227.
  7. R.F. Dantas, O. Rossiter, A.K.R. Teixeira, A.S.M. Simões, V.L. da Silva, Direct UV photolysis of propranolol and metronidazole in aqueous solution, Chem. Eng. J., 158 (2010) 143–147.
  8. M. Malakootian, M. Hashemi, A. Toolabi, A. Nasiri, Investigation of nickel removal using poly(amidoamine) generation 4 dendrimer (PAMAM G4) from aqueous solutions, J. Eng. Res., 6 (2018) 13–23.
  9. A. Pasgar, A. Nasiri, N. Javid, Single and competitive adsorption of Cu2+ and Pb2+ by tea pulp from aqueous solutions, Environ. Health Eng. Manage. J., 9 (2022) 65–74.
  10. M. Malakootian, A. Nasiri, M.R. Heidari, Removal of phenol from steel plant wastewater in three dimensional electrochemical (TDE) process using CoFe2O4@AC/H2O2, Z. Phys. Chem., 234 (2020) 1661–1679.
  11. Z. Fang, J. Chen, X. Qiu, X. Qiu, W. Cheng, L. Zhu, Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination, 268 (2011) 60–67.
  12. H. Wang, G. Zhang, Y. Gao, Photocatalytic degradation of metronidazole in aqueous solution by niobate K6Nb10.8O30, Wuhan Univ. J. Nat. Sci., 15 (2010) 345–349.
  13. N. Okhovat, M. Hashemi, A.A. Golpayegani, Photocatalytic decomposition of Metronidazolein aqueous solutions using titanium dioxide nanoparticles, J. Mater. Environ. Sci., 6 (2015) 792–799.
  14. C. Wang, R. Huang, R. Sun, J. Yang, M. Sillanpää, A review on persulfates activation by functional biochar for organic contaminants removal: synthesis, characterizations, radical determination, and mechanism, J. Environ. Chem. Eng., 9 (2021) 106267, doi: 10.1016/j.jece.2021.106267.
  15. C. Wang, R. Sun, R. Huang, H. Wang, Superior Fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: synthesis, catalytic performance, and mechanism, Sep. Purif. Technol., 270 (2021) 118773, doi: 10.1016/j.seppur.2021.118773.
  16. R. Huang, J. Yang, Y. Cao, D.D. Dionysiou, C. Wang, Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder, Sep. Purif. Technol., 291 (2022) 120963, doi: 10.1016/j.seppur.2022.120963.
  17. M. Malakootian, J. Smith, M. Gharaghani, H. Mahdizadeh, A. Nasiri, G. Yazdanpanah, Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface, Desal. Water Treat., 182 (2020) 385–394.
  18. A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2 (2014) 557–572.
  19. M. Umar, H.A. Aziz, M.S. Yusoff, Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate, Waste Manage., 30 (2010) 2113–2121.
  20. N. Sharifi, A. Nasiri, S.S. Martínez, H. Amiri, Synthesis of Fe3O4@activated carbon to treat metronidazole effluents by adsorption and heterogeneous Fenton with effluent bioassay, J. Photochem. Photobiol., A, 427 (2022) 113845, doi: 10.1016/j.jphotochem.2022.113845.
  21. D. Martínez-Pachón, M. Ibáñez, F. Hernández, R.A. Torres-Palma, A. Moncayo-Lasso, Photo-electro-Fenton process applied to the degradation of valsartan: effect of parameters, identification of degradation routes and mineralization in combination with a biological system, J. Environ. Chem. Eng., 6 (2018) 7302–7311.
  22. H. Dastpak, H. Pasalari, A.J. Jafari, M. Gholami, M. Farzadkia, Improvement of Co-composting by a combined pretreatment ozonation/ultrasonic process in stabilization of raw activated sludge, Sci. Rep., 10 (2020) 1070, doi: 10.1038/s41598-020- 58054-y
  23. F. Deng, S. Qiu, C. Chen, X. Ding, F. Ma, Heterogeneous catalytic ozonation of refinery wastewater over alumina-supported Mn and Cu oxides catalyst, Ozone: Sci. Eng., 37 (2015) 546–555.
  24. H. Mahdizadeh, A. Nasiri, M.A. Gharaghani, G. Yazdanpanah, Hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 dye, MethodsX, 7 (2020) 101118, doi: 10.1016/j.mex.2020.101118.
  25. M. Malakootian, A. Nasiri, A. Asadipour, M. Faraji, E. Kargar, A facile and green method for synthesis
    of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media, MethodsX, 6 (2019) 1575–1580.
  26. M. Malakootian, A. Nasiri, H. Mahdizadeh, Metronidazole adsorption on CoFe2O4/activated carbon@chitosan as a new magnetic biocomposite: modelling, analysis, and optimization by response surface methodology, Desal. Water Treat., 164 (2019) 215–227.
  27. M. Malakootian, J.A. Smith, M.A. Gharaghani, H. Mahdizadeh, A. Nasiri, G. Yazdanpanah, Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface, Desal. Water Treat., 18 (2020) 385–394.
  28. A. Chavoshani, M.M. Amin, G. Asgari, A. Seidmohammadi, M. Hashemi, Chapter 8 – Microwave/Hydrogen Peroxide Processes, S.C. Ameta, R. Ameta, Eds., Advanced Oxidation Processes for Waste Water Treatment, Academic Press, Amsterdam, 2018, pp. 215–255.
  29. M. Malakootian, A. Nasiri, M. Khatami, H. Mahdizadeh, P. Karimi, M. Ahmadian, N. Asadzadeh, M.R. Heidari, Experimental data on the removal of phenol by electro-H2O2 in presence of UV with response surface methodology, MethodsX, 6 (2019) 1188–1193.
  30. M. Malakootian, N. Olama, M. Malakootian, A. Nasiri, Photocatalytic degradation of metronidazole from aquatic solution by TiO2-doped Fe3+ nano-photocatalyst, Int. J. Environ. Sci. Technol., 16 (2019) 4275–4284.
  31. G. Zolfaghari, M. Kargar, Nanofiltration and microfiltration for the removal of chromium, total dissolved solids, and sulfate from water, MethodsX, 6 (2019) 549–557.
  32. M.R. Muthumareeswaran, M. Alhoshan, G.P. Agarwal, Ultrafiltration membrane for effective removal of chromium ions from potable water, Sci. Rep., 7 (2017) 41423, doi: 10.1038/srep41423.
  33. B. Karimi, S. Khanaki, L. Ma’mani, S.M. Khezri, A. Karami, Efficient removal of organophosphate pesticide imidacloprid from water samples by modified magnetic-silica core-shell nanoparticles as a recoverable nanoadsorbent, J. School Public Health Inst. Public Health Res., 15 (2018) 389–400.
  34. Y. Wang, C. Shen, M. Zhang, B.-T. Zhang, Y.-G. Yu, The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand, Chem. Eng. J., 296 (2016) 79–89.
  35. M. Malakootian, A. Nasiri, M.R. Heidari, Removal of phenol from steel plant wastewater in three dimensional electrochemical (TDE) process using CoFe2O4@AC/H2O2, Z. Phys. Chem., 234 (2019) 1661–1679.
  36. R. Nodehi, K.A. Rahbar, Removal of amoxicillin from an aqueous medium with the modified natural zeolite, J. Appl. Res. Chem., 13 (2020) 127–138.
  37. S. Sadeghi, G. Raki, A. Amini, N. Mengelizadeh, M.M. Amin, M. Hashemi, Study of the effectiveness of the third generation polyamideamine and polypropylene imine dendrimers in removal of reactive blue 19 dye from aqueous solutions, Environ. Health Eng. Manage., 5 (2018) 197–203.
  38. K. Adibkia, M. Barzegar-Jalali, Y. Javadzadeh, R. Bayrami, G. Mohammadi, A review on the porous adsorbents in drug delivery systems, J. Pharm. Sci., 18 (2012) 103–118.
  39. A. Nasiri, S. Rajabi, M. Hashemi, H. Nasab, CuCoFe2O4@MC/ AC as a new hybrid magnetic nanocomposite for metronidazole removal from wastewater: bioassay and toxicity of effluent, Sep. Purif. Technol., (2022) 121366.
  40. N. Ballav, H.J. Choi, S.B. Mishra, A. Maity, Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI), J. Ind. Eng. Chem., 20 (2014) 4085–4093.
  41. N. Javid, A. Nasiri, M. Malakootian, Removal of nonylphenol from aqueous solutions using carbonized date pits modified with ZnO nanoparticles, Desal. Water Treat., 141 (2019) 140–148.
  42. A. Nasiri, M. Malakootian, M.R. Heidari, S.N. Asadzadeh, CoFe2O4@methylcelloluse as a new magnetic nano biocomposite for sonocatalytic degradation of Reactive Blue 19, J. Polym. Environ., 29 (2021) 2660–2675.
  43. A. Nasiri, M. Malakootian, M.A. Shiri, G. Yazdanpanah, M. Nozari, CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology, J. Polym. Res., 28 (2021) 192, doi: 10.1007/s10965-021-02540-y.
  44. S.C. Goh, C.H. Chia, S. Zakaria, M. Yusoff, C.Y. Haw, S. Ahmadi, N.M. Huang, H.N. Lim, Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination, Mater. Chem. Phys., 120 (2010) 31–35.
  45. M. Malakootian, M. Khatami, H. Mahdizadeh, A. Nasiri, M. Amiri Gharaghani, A study on the photocatalytic degradation of p-Nitroaniline on glass plates by thermo-immobilized ZnO nanoparticle, Inorg. Nano-Metal Chem., 50 (2019) 124–135.
  46. H. Pourzamani, M. Hashemi, B. Bina, A. Rashidi, M.M. Amin, S. Parastar, Toluene removal from aqueous solutions using single-wall carbon nanotube and magnetic nanoparticle–hybrid adsorbent, J. Environ. Eng., 144 (2018) 04017104, doi: 10.1061/(ASCE)EE.1943-7870.0001318.
  47. S. Fadaei, F.N. Moghadam, M. Hashemi, H. Pourzamani, BTEX removal from aqueous solution by modified multiwalled carbon nanotubes with ozone, Anuário do Instituto de Geociências – UFRJ, 40 (2017) 235–242.
  48. A. Nasiri, S. Rajabi, M. Hashemi, CoFe2O4@methylcellulose/AC as a new, green, and eco-friendly
    nano-magnetic adsorbent for removal of Reactive Red 198 from aqueous solution, Arabian J. Chem., 15 (2022) 103745.
  49. A. Nasiri, S. Rajabi, A. Amiri, M. Fattahizade, O. Hasani, A. Lalehzari, M. Hashemi, Adsorption of tetracycline using CuCoFe2O4@chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: isotherm, kinetic and thermodynamic study, Arabian J. Chem., 15 (2022) 104014, doi: 10.1016/j.arabjc.2022.104014.
  50. A. Nasiri, M. Malakootian, N. Javid, Modelling and optimization of lead adsorption by CoFe2O4@CMC@HZSM-5 from aqueous solution using response surface methodology, Desal. Water Treat., 248 (2022) 134–148.
  51. A. Nasiri, M. Malakootian, M.A. Shiri, G. Yazdanpanah, M. Nozari, CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology, J. Polym. Res., 28 (2021) 1–23.
  52. J. Rivera-Utrilla, C.V. Gómez-Pacheco, M. Sánchez-Polo, J.J. López-Peñalver, R Ocampo-Pérez, Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludgederived adsorbents, J. Environ. Manage., 131 (2013) 16–24.
  53. F. Marrakchi, M. Ahmed, W. Khanday, M. Asif, B. Hameed, Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue, Int. J. Biol. Macromol., 98 (2017) 233–239.
  54. W. Khanday, F. Marrakchi, M. Asif, B. Hameed, Mesoporous zeolite–activated carbon composite from oil palm ash as an effective adsorbent for methylene blue, J. Taiwan Inst. Chem. Eng., 70 (2017) 32–41.
  55. M.A. Islam, M. Ahmed, W. Khanday, M. Asif, B. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
  56. M.A. Islam, S. Sabar, A. Benhouria, W. Khanday, M. Asif, B. Hameed, Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption, J. Taiwan Inst. Chem. Eng., 74 (2017) 96–104.
  57. F. Marrakchi, W. Khanday, M. Asif, B. Hameed, Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16, Int. J. Biol. Macromol., 93 (2016) 1231–1239.
  58. W. Khanday, M. Asif, B. Hameed, Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bioadsorbent for the removal of methylene blue and acid blue 29 dyes, Int. J. Biol. Macromol., 95 (2017) 895–902.
  59. D. Yuan, J. Ding, J. Zhou, L. Wang, H. Wan, W.-L. Dai, G. Guan, Graphite carbon nitride nanosheets decorated with ZIF-8 nanoparticles: effects of the preparation method and their special hybrid structures on the photocatalytic performance, J. Alloys Compd., 762 (2018) 98–108.
  60. Q.-Q. Zhang, G.-G. Ying, C.-G. Pan, Y.-S. Liu, J.-L. Zhao, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol., 49 (2015) 6772–6782.
  61. P. Liu, W.-J. Liu, H. Jiang, J.-J. Chen, W.-W. Li, H.-Q. Yu, Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution, Bioresour. Technol., 121 (2012) 235–240.
  62. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A Maity, V.K. Gupta, Modeling of competitive ultrasonic assisted removal of the dyes – Methylene blue and Safranin-O using Fe3O4 nanoparticles, Chem. Eng. J., 268 (2015) 28–37.
  63. N. Amirmahani, N.O. Mahmoodi, M. Bahramnejad, N. Seyedi, Recent developments of metallic nanoparticles and their catalytic activity in organic reactions, J. Chin. Chem. Soc., 67 (2020) 1326–1337.
  64. H. Pourzamani, S. Parastar, M. Hashemi, The elimination of xylene from aqueous solutions using single wall carbon nanotube and magnetic nanoparticle hybrid adsorbent, Process Saf. Environ. Prot., 109 (2017) 688–696.
  65. K. Ventura, R.A. Arrieta, M. Marcos-Hernández, V. Jabbari, C.D. Powell, R. Turley, A.W. Lounsbury, J.B. Zimmerman, J. Gardea-Torresdey, M.S. Wong, D. Villagrán, Superparamagnetic MOF@GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents, Sci. Total Environ., 738 (2020) 139213, doi: 10.1016/j.scitotenv.2020.139213.
  66. A. Benvidi, M. Yekrangi, S. Jahanbani, H.R. Zare, The extraction and measurement of nickel metal ion in crab, shellfish and rice samples using magnetic silk fibroin – EDTA ligand and furnace atomic absorption spectrometry, Food Chem., 319 (2020) 126432, doi: 10.1016/j.foodchem.2020.126432.
  67. H.A.L. de Oliveira, A.F.C. Campos, G. Gomide, Y. Zhang, S. Ghoshal, Elaboration of a core@shell bimagnetic nanoadsorbent (CoFe2O4@γ-Fe2O3) for the removal of As(V) from water, Colloids Surf., A, 600 (2020) 125002, doi: 10.1016/j.colsurfa.2020.125002.
  68. F. Movahhedi, A. Maghsodi, L. Adlnasab, Response surface methodology for heavy metals removal by tioglycolic-modified Zn–Fe layer double hydroxide as a magnetic recyclable adsorbent, Chem. Pap., 74 (2020) 3169–3182.
  69. A. Ghiasi, A. Malekpour, Octyl coated cobalt-ferrite/silica coreshell nanoparticles for ultrasonic
    assisted-magnetic solid-phase extraction and speciation of trace amount of chromium in water samples, Microchem. J., 154 (2020) 104530, doi: 10.1016/j.microc.2019.104530.
  70. S.K. Sahoo, S. Padhiari, S.K. Biswal, B.B. Panda, G. Hota, Fe3O4 nanoparticles functionalized GO/g-C3N4 nanocomposite: an efficient magnetic nanoadsorbent for adsorptive removal of organic pollutants, Mater. Chem. Phys., 244 (2020) 122710, doi: 10.1016/j.matchemphys.2020.122710.
  71. T. Tang, S. Cao, C. Xi, X. Li, L. Zhang, G. Wang, Z. Chen, Chitosan functionalized magnetic graphene oxide nanocomposite for the sensitive and effective determination of alkaloids in hotpot, Int. J. Biol. Macromol., 146 (2020) 343–352.
  72. K.C. Das, B. Das, S.S. Dhar, Effective catalytic degradation of organic dyes by nickel supported on hydroxyapatiteencapsulated cobalt ferrite (Ni/HAP/CoFe2O4) magnetic novel nanocomposite, Water Air Soil Pollut., 231 (2020) 43, doi: 10.1007/s11270-020-4409-1.
  73. B. D’Cruz, M. Madkour, M.O. Amin, E. Al-Hetlani, Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater, Mater. Chem. Phys., 240 (2020) 122109, doi: 10.1016/j.matchemphys.2019.122109.
  74. S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M.J. Buehler, D.L. Kaplan, Biopolymer nanofibrils: structure, modeling, preparation, and applications, Prog. Polym. Sci., 85 (2018) 1–56.
  75. S. Nandi, P. Guha, A review on preparation and properties of cellulose nanocrystal-incorporated natural biopolymer, J. Packag. Technol. Res., 2 (2018) 149–166.
  76. M.H. Mehdinejad, N. Mengelizadeh, A. Bay, H. Pourzamani, Y. Hajizadeh, N. Niknam, A.H. Moradi, M. Hashemi, H. Mohammadi, Adsorption of methylene blue from aqueous solutions by cellulose and nanofiber cellulose and its electrochemical regeneration, Desal. Water Treat., 110 (2018) 250–263.
  77. M. Malakootian, A. Nasiri, A. Asadipour, E. Kargar, Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media, Process Saf. Environ. Prot., 129 (2019) 138–151.
  78. M. Malakootian, A. Nasiri, H. Mahdizadeh, Preparation of CoFe2O4/activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions, Water Sci. Technol., 78 (2018) 2158–2170.
  79. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M. Faraji, A microwave assisted method to synthesize
    nano-CoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation, MethodsX, 6 (2019) 1557–1563.
  80. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M.A. Gharaghani, A. Asadipour, New magnetic nanobiocomposite CoFe2O4@methycellulose: facile synthesis, characterization, and photocatalytic degradation of metronidazole, J. Mater. Sci. - Mater. Electron. 30 (2019) 8595–8610.
  81. M. Malakootian, H. Mahdizadeh, M. Khavari, A. Nasiri, M.A. Gharaghani, M. Khatami, E. Sahle-Demessie, R.S. Varma, Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions, J. Environ. Chem. Eng., 8 (2020) 103553, doi: 10.1016/j.jece.2019.103553.
  82. F. Tamaddon, M.H. Mosslemin, A. Asadipour, M.A. Gharaghani, A. Nasiri, Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole, Int. J. Biol. Macromol., 154 (2020) 1036–1049.
  83. F. Tamaddon, A. Nasiri, G. Yazdanpanah, Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite, MethodsX, 7 (2020) 100764, doi: 10.1016/j.mex.2019.12.005.
  84. A. Nasiri, M. Malakootian, M.R. Heidari, S.N. Asadzadeh, CoFe2O4@methylcelloluse as a new magnetic nano biocomposite for sonocatalytic degradation of reactive blue 19, J. Polym. Environ., 29 (2021) 2660–2675.
  85. F. Mokhtari, M. Heidarpour, N. Zandieh, Safety of nanoparticles and evaluation of nanotoxicity, J. Bio Safety, 8 (2015) 1–10.
  86. M. Shokrzadeh, A. Tasdighi, M. Modanlo, F. Shaki, Evaluating and comparing genotoxicity mechanism of copper nanoparticles and copper sulfate, J. Mazandaran Univ. Med. Sci., 28 (2018) 1–9.
  87. M. Kermani, M. Farzadkia, A. Esrafili, Y. Shahamat, S. Jokandan, Investigation of toxicity changes of catechol in oxidation process with ozone by bioassay, Iran. J. Health Environ., 10 (2017) 237–248.
  88. S. Mashjoor, M. Alishahi, Z. Tulaby Dezfuly, Comparative toxicity assessment of chemical nanosilver and biosynthetic silver nanoparticles produced by marine macroalgae from the Persian Gulf in biomarker: Artemia nauplii, J. Vet. Res., 74 (2019) 73–82.
  89. K. Naddafi, M.R. Zare, M. Younesian, N. Rastkari, M. Alimohammadi, N. Mousavi, Bioassay for toxicity assessment of zinc oxide and titanium oxide to Escherichia coli ATCC 35218 and Staphylococcus aureus ATCC 25923 bacteria, Iran. J. Health Environ., 4 (2011) 171–80.
  90. H. Jin, X. Yang, D. Yin, H. Yu, A case study on identifying the toxicant in effluent discharged from a chemical plant, Mar. Pollut. Bull., 39 (1999) 122–125.
  91. M. Kermani, A. Esrafili, M. Farzadkia, S. Salahshour-Arian, Identification of oxidation intermediates and investigation of toxicity changes in heterogenic catalytic ozonation process in the presence of MgO nanoparticles for metronidazole removal from aqueous solution, J. Health Syst. Res.; Isfahan Univ. Med. Sci., 12 (2016) 140–145.
  92. G.O. El-Sayed, H.A. Dessouki, H.S. Jahin, S.S. Ibrahiem, Photocatalytic degradation of metronidazole in aqueous solutions by copper oxide nanoparticles, J. Basic Environ. Sci., 1 (2014) 102–110.
  93. O.S. Bello, O.M. Adelaide, M.A. Hammed, O.A.M. Popoola, Kinetic and equilibrium studies of methylene blue removal from aqueous solution by adsorption on treated sawdust, Macedonian Chem. Chem. Eng., 29 (2010) 77–85.
  94. N. Farnad, K. Farhadi, N.H. Voelcker, Polydopamine nanoparticles as a new and highly selective biosorbent for the removal of copper(II) ions from aqueous solutions, Water Air Soil Pollut., 223 (2012) 3535–3544.
  95. C. Wang, H. Wang, Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater-contribution to sustainability in agroforestry, J. Cleaner Prod., 184 (2018) 921–928.
  96. C. Wang, H. Wang, Y. Cao, Pb(II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation, Colloids Surf., A, 556 (2018) 177–184.
  97. K.J. Shiny, K.N. Remani, E. Nirmala, T.K. Jalaja, V.K. Sasidharan, Biotreatment of wastewater using aquatic invertebrates, Daphnia magna and Paramecium caudatum, Bioresour. Technol., 96 (2005) 55–58.
  98. Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2. 2004, OECD.
  99. S. Mashjoor, M. Aishahi, Z. Tulabi Dezfuli, Comparative toxicity assessment of chemical nanosilver and biosynthetic silver nanoparticles produced by marine macroalgae from the Persian Gulf in biomarker: Artemia nauplii, J. Vet. Res, 74 (2019) 73–82.
  100. R.L. Oliveira, J.G. Vieira, H.S. Barud, R. Assunção, G. R Filho, S.J. Ribeiro, Y. Messadeqq, Synthesis and characterization of methylcellulose produced from bacterial cellulose under heterogeneous condition, J. Braz. Chem. Soc., 26 (2015) 1861–1870.
  101. E. Wiercigroch, E. Szafraniec, K. Czamara, M.Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, K. Malek, Raman and infrared spectroscopy of carbohydrates: a review, Spectrochim. Acta, Part A, 185 (2017) 317–335.
  102. Y. Sekiguchi, C. Sawatari, T. Kondo, A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses, Carbohydr. Polym., 53 (2003) 145–153.
  103. G. Rodrigues Filho, R.M.N. de Assunção, J.G. Vieira, C. da S. Meireles, D.A. Cerqueira, H. da Silva Barud, S.J.L. Ribeiro, Y. Messaddeq, Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties, Polym. Degrad. Stab., 92 (2007) 205–210.
  104. G. de Carvalho Oliveira, G.R. Filho, J.G. Vieira, R.M.N. De Assunção, C. da Silva Meireles, D.A. Cerqueira,
    R.J. de Oliveira, W.G. Silva, L.A. de Castro Motta, Synthesis and application of methylcellulose extracted from waste newspaper in CPV‐ARI Portland cement mortars, J. Appl. Polym. Sci., 118 (2010) 1380–1385.
  105. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J. Hill, Nanoarchitectonics for mesoporous materials, Bull. Chem. Soc. Jpn., 85 (2012) 1–32.
  106. E. Asgari, A. Sheikhmohammadi, J. Yeganeh, Application of the Fe3O4-chitosan nanoadsorbent for the adsorption of metronidazole from wastewater: optimization, kinetic, thermodynamic and equilibrium studies, Int. J. Biol. Macromol., 164 (2020) 694–706.
  107. Y. Guo, W. Huang, B. Chen, Y. Zhao, D. Liu, Y. Sun, B. Gong, Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism, J. Hazard. Mater., 339 (2017) 22–32.
  108. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, A. Allahresani, FeNi3/SiO2 magnetic nanocomposite as an efficient and recyclable heterogeneous Fenton-like catalyst for the oxidation of metronidazole in neutral environments: adsorption and degradation studies, Composites, Part B, 166 (2019) 328–340.
  109. L. Sun, D. Chen, S. Wan, Z. Yu, Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: kinetic, equilibrium, and mechanisms, J. Polym. Environ., 26 (2018) 765–777.
  110. E. Çalışkan, S. Göktürk, Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon, Sep. Sci. Technol., 45 (2010) 244–255.
  111. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq., 273 (2019) 425–434.
  112. N. Nasseh, B. Barikbin, L. Taghavi, M.A. Nasseri, Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies), Composites, Part B, 159 (2019) 146–156.
  113. L. Sun, D. Chen, S. Wan, Z. Yu, Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: kinetic, equilibrium, and mechanisms, J. Polym. Environ., 26 (2017) 765–777.
  114. A. Nasiri, M.R. Heidari, N. Javid, G. Yazdanpanah, New efficient and recyclable magnetic nanohybrid adsorbent for the metronidazole removal from simulated wastewater, J. Mater. Sci. - Mater. Electron., 33 (2022) 25103–25126.
  115. J.L. Asensio, A. Ardá, F.J. Cañada, J. Jimenez-Barbero, Carbohydrate–aromatic interactions, Acc. Chem. Res., 46 (2013) 946–954.
  116. M. Kumari, R.B. Sunoj, P.V. Balaji, Exploration of CH π mediated stacking interactions in saccharide: aromatic residue complexes through conformational sampling, Carbohydr. Res., 361 (2012) 133–140.
  117. M. Nishio, The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates, Phys. Chem. Chem. Phys., 13 (2011) 13873–13900.
  118. J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M. Ferro-García, I. Bautista-Toledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater., 170 (2009) 298–305.
  119. D.R. Sanvordeker, Y.W. Chien, T.K. Lin, H.J. Lambert, Binding of metronidazole and its derivatives to plasma proteins: an assessment of drug binding phenomenon, J. Pharm. Sci., 64 (1975) 1797–1803.
  120. X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain, Chemosphere, 79 (2010) 928–933.
  121. M. Hamidi, B. Jovanova, T. Panovska, Toxicоlogical evaluation of the plant products using brine shrimp (Artemia salina L.) model, J. Maced Pharm. Bull., 60 (2014) 9–18.
  122. H. Azarpira, D. Balarak, Rice husk as a biosorbent for antibiotic metronidazole removal: isotherm studies and model validation, Int. J. ChemTech Res., 9 (2016) 566–573.
  123. A. Fatemeh, M. Gholami, A. Jonidi Jafari, M. Kermani, H. Asgharnia, R. Rezaei Kalantari, Study of tetracycline and metronidazole adsorption on biochar prepared from rice bran kinetics, isotherms and mechanisms, Desal. Water Treat., 159 (2019) 390–401.