References

  1. M.A. Dawoud, The role of desalination in augmentation of water supply in GCC countries, Desalination, 186 (2005) 187–198.
  2. Quenching Humanity’s Freshwater Thirst Creates a Salty Threat – Our World. Available at: https://ourworld.unu.edu/en/quenching-humanitys-freshwater-thirst-creates-a-salty-threat
  3. K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1–25.
  4. M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci., 164 (2011) 56–88.
  5. C.H. Lee, W.H. Hong, Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol, J. Membr. Sci., 188 (2001) 79–86.
  6. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination, 287 (2012) 2–18.
  7. S.T. Hsu, K.T. Cheng, J.S. Chiou, Seawater desalination by direct contact membrane distillation, Desalination, 143 (2002) 279–287.
  8. M. Khayet, P. Godino, J.I. Mengual, Nature of flow on sweeping gas membrane distillation, J. Membr. Sci., 170 (2000) 243–255.
  9. C.M. Guijt, G.W. Meindersma, T. Reith, A.B. de Haan, Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis, Sep. Purif. Technol., 43 (2005) 245–255.
  10. M. Khayet Souhaimi, T. Matsuura, Membrane Distillation Principles and Applications, Elsevier, Amsterdam, 2011.
  11. A. Velázquez, J.I. Mengual, Temperature polarization coefficients in membrane distillation, Ind. Eng. Chem. Res., 34 (1995) 585–590.
  12. O.R. Lokare, R.D. Vidic, Impact of operating conditions on measured and predicted concentration polarization in membrane distillation, Environ. Sci. Technol., 53 (2019) 11869–11876.
  13. R.W. Schofield, A.G. Fane, C.J.D. Fell, R. Macoun, Factors affecting flux in membrane distillation, Desalination, 77 (1990) 279–294.
  14. A. Anvari, A. Azimi Yancheshme, K.M. Kekre, A. Ronen, State-of-the-art methods for overcoming temperature polarization in membrane distillation process: a review, J. Membr. Sci., 616 (2020) 118413, doi: 10.1016/j.memsci.2020.118413.
  15. S.M. Alawad, A.E. Khalifa, Performance and energy evaluation of compact multistage air gap membrane distillation system: an experimental investigation, Sep. Purif. Technol., 268 (2021) 118594, doi: 10.1016/j.seppur.2021.118594.
  16. S.M. Alawad, A.E. Khalifa, Development of an efficient compact multistage membrane distillation module for water desalination, Case Stud. Therm. Eng., 25 (2021) 100979, doi: 10.1016/j.csite.2021.100979.
  17. R. Bahar, K.C. Ng, Fresh water production by membrane distillation (MD) using marine engine’s waste heat, Sustainable Energy Technol. Assess., 42 (2020) 100860, doi: 10.1016/j.seta.2020.100860.
  18. R. Bahar, M.N.A. Hawlader, T.F. Ariff, Channeled coolant plate: a new method to enhance freshwater production from an air gap membrane distillation (AGMD) desalination unit, Desalination, 359 (2015) 71–81.
  19. A.E. Khalifa, Flux enhanced water gap membrane distillation process-circulation of gap water, Sep. Purif. Technol., 231 (2020) 115938, doi: 10.1016/j.seppur.2019.115938.
  20. D.M. Warsinger, J. Swaminathan, L.L. Morales, J.H. Lienhard V, Comprehensive condensation flow regimes in air gap membrane distillation: visualization and energy efficiency, J. Membr. Sci., 555 (2018) 517–528.
  21. A. Khalifa, D. Lawal, M. Antar, M. Khayet, Experimental and theoretical investigation on water desalination using air gap membrane distillation, Desalination, 376 (2015) 94–108.
  22. D.U. Lawal, A.E. Khalifa, Experimental investigation of an air gap membrane distillation unit with double-sided cooling channel, Desal. Water Treat., 57 (2015) 11066–11080.
  23. D. Lawal, M. Abdul Azeem, A. Khalifa, W. Falath, T. Baroud, M. Antar, Performance improvement of an air gap membrane distillation process with rotating fan, Appl. Therm. Eng., 204 (2022) 117964, doi: 10.1016/j.applthermaleng.2021.117964.
  24. R. Bahar, M.J.P. Bappy, Enhanced production from an air gap membrane distillation desalination system by varying the feed entry angle, IOP Conf. Ser.: Earth Environ. Sci., 945 (2021) 012026.
  25. Effect of Module Inclination Angle on Air Gap Membrane Distillation. Available at: https://dspace.mit.edu/handle/1721.1/100241
  26. H. Kurokawa, O. Kuroda, S. Takahashi, K. Ebara, Vapour permeate characteristics of membrane distillation, Sep. Sci. Technol., 25 (1990) 1349–1359.
  27. J.P. Holman, Heat Transfer, 10th ed., McGraw-Hill, New York, 2010.
  28. A.F. Mills, Basic Heat and Mass Transfer, 2nd ed., Prentice Hall, New Jersey, 1999.
  29. R.K. MacGregor, A.F. Emery, Free convection through vertical plane layers—moderate and high Prandtl number fluids, J. Heat Transfer, 91 (1969) 391–401.
  30. F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Introduction to Heat Transfer, 6th ed., John Wiley and Sons Inc., New Jersey, 2011.
  31. A. Fluent, Theory and User’s Guide, ANSYS Corporation, Pennsylvania, 2014.
  32. A. Fluent, Theory Guide 14.0, ANSYS Corporation, Pennsylvania, 2011.
  33. M.J. Perves Bappy, R. Bahar, S. Ibrahim, T.F. Ariff, Enhanced freshwater production using finned-plate air gap membrane distillation (AGMD), MATEC Web Conf., 103 (2017) 06014, doi: 10.1051/matecconf/201710306014.
  34. R. Bahar, M.N.A. Hawlader, T.F. Ariff, Channeled coolant plate: a new method to enhance freshwater production from an air gap membrane distillation (AGMD) desalination unit, Desalination, 359 (2015) 71–81.