References

  1. E. Luévano-Hipólito, A.M. Cruz, Sol–gel synthesis and photocatalytic performance of ZnO toward oxidation reaction of NO, Res. Chem. Intermed., 42 (2016) 4879–4891.
  2. Z. Barzgari, A. Ghazizadeh, S.Z. Askari, Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of orange G under solar light, Res. Chem. Intermed., 42 (2016) 4303–4315.
  3. R. Jeyachitra, V. Senthilnathan, T.S. Senthil, Studies on electrical behavior of Fe doped ZnO nanoparticles prepared via co-precipitation approach for photo-catalytic application, J. Mater. Sci., 29 (2018) 1189–1197.
  4. K.P. Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Photocatalytic and antibacterial studies of indium-doped ZnO nanoparticles synthesized by co-precipitation technique, J. Mater. Sci., 28 (2017) 19025–19037.
  5. A. Rahman, R. Jayaganthan, Synthesis, characterization and photocatalytic studies of La, Dy-doped ZnO nanoparticles, Trans. Indian Inst. Met., 70 (2017) 1063–1074.
  6. G. Vijayaprasath, P. Soundarrajan, G. Ravi, Synthesis of ZnO nanosheets morphology by Ce doping for photocatalytic activity, J. Electron. Mater., 48 (2019) 684–695.
  7. M. Rafique, R. Tahir, N.R. Khalid, M.B. Tahir, M. Irshad, S.S.A. Gillani, A. Usman, K. Shahzad, A.M. Ali, S. Muhammad, Hydrothermal synthesis of an efficient and visible light responsive pure and strontium doped zinc oxide nano‑hexagonal photocatalysts for photodegradation of rhodamine B dye, Appl. Nanosci., 11 (2021) 1045–1056.
  8. R. Khan, S. Raj, J.H. Yun, Y.T. Yu, J.I. Lee, I.H. Lee, Facile preparation of ZnO nanosheets and its photocatalytic activity in the degradation of rhodamine B dye under UV irradiation, Electron. Mater. Lett., 12 (2016) 784–788.
  9. I. Ahmad, M.S. Akhtar, E. Ahmed, M. Ahmad, Facile synthesis of Pr‑doped ZnO photocatalyst using sol–gel method and its visible light photocatalytic activity, J. Mater. Sci., 31 (2020) 1084–1093.
  10. M.S. Nasrollahzadeh, M. Hadavifar, S.S. Ghasemi, M.A. Chamjangali, Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions, Appl. Water Sci., 8 (2018) 104, doi: 10.1007/s13201-018-0750-6.
  11. M.M. Ba-Abbad, M.S. Takriff, A.W. Mohammad, Enhancement of 2-chlorophenol photocatalytic degradation in the presence Co2+-doped ZnO nanoparticles under direct solar radiation, Res. Chem. Intermed., 42 (2016) 5219–5236.
  12. S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv., 5 (2015) 3306–3351.
  13. A. Phuruangrat, B. Kuntalue, S. Thongtem, T. Thongtem, Hydrothermal synthesis of hexagonal ZnO nanoplates used for photodegradation of methylene blue, Optik, 226 (2021) 165949, doi: 10.1016/j.ijleo.2020.165949.
  14. H.-Y. Lee, C.-Y. Cheng, C.-T. Lee, Bottom gate thin-film transistors using parallelly lateral ZnO nanorods grown by hydrothermal method, Mater. Sci. Semicond. Process., 119 (2020) 105223, doi: 10.1016/j.mssp.2020.105223.
  15. S. Sa-nguanprang, A. Phuruangrat, T. Thongtem, S. Thongtem, Synthesis of ZnO nanoparticles by tartaric acid solution combustion and their photocatalytic properties, Russ. J. Inorg. Chem., 65 (2020) 1102–1110.
  16. D. Thakur, A. Sharma, D.S. Rana, N. Thakur, D. Singh, T. Tamulevicius, M. Andrulevicius, S. Tamulevicius, S.K. Shukla, S. Thakur, Facile synthesis of silver-doped zinc oxide nanostructures as efficient scaffolds for detection of p-nitrophenol, Chemosensors, 8 (2020) 108, doi: 10.3390/chemosensors8040108.
  17. X. Lian, Y. Li, T. Lv, Y. Zou, D. An, N. Zhang, Preparation of ZnO nanoparticles by combustion method and their gas sensing properties, Electron. Mater. Lett., 12 (2016) 24–31.
  18. K.R. Ahammed, Md. Ashaduzzaman, S.C. Paul, M.R. Nath, S. Bhowmik, O. Saha, Md.M. Rahaman, S. Bhowmik, T.D. Aka, Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity, SN Appl. Sci., 2 (2020) 955, doi: 10.1007/s42452-020-2762-8.
  19. A. Phuruangrat, T. Thongtem, B. Kuntalue, S. Thongtem, Microwave-assisted synthesis and characterization of roselike and flower-like zinc oxide nanostructures, J. Ovonic Res., 7 (2011) 107–113.
  20. S.K. Chawla, P. Kaur, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, Effect of fuel on the synthesis, structural, and magnetic properties of M-type hexagonal SrFe12O19 nanoparticles, J. Supercond. Novel Magn., 28 (2015) 1589–1599.
  21. S. Sasikumar, R. Vijayaraghavan, Effect of metal-ion-tofuel ratio on the phase formation of bioceramic phosphates synthesized by self-propagating combustion, Sci. Technol. Adv. Mater., 9 (2008) 035003, doi: 10.1088/1468-6996/9/3/035003.
  22. I.T. Papadas, A. Ioakeimidis, G.S. Armatas, S.A. Choulis, Lowtemperature combustion synthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics, Adv. Sci., 5 (2018) 1701029, doi: 10.1002/advs.201701029.
  23. G. Clarke, A. Rogov, S. McCarthy, L. Bonacina, Y. Guńko, C. Galez, R.L. Dantec, Y. Volkov, Y. Mugnier,
    A. Prina-Mello, Preparation from a revisited wet chemical route of phase-pure, monocrystalline and
    SHG-efficient BiFeO3 nanoparticles for harmonic bio-imaging, Sci. Rep., 8 (2018) 10473,
    doi: 10.1038/s41598-018-28557-w.
  24. H. Vahdat Vasei, S.M. Masoudpanah, M. Adeli, M.R. Aboutalebi, Photocatalytic properties of solution combustion synthesized ZnO powders using mixture of CTAB and glycine and citric acid fuels, Adv. Powder Technol., 30 (2019) 284–291.
  25. Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, USA, 2001.
  26. D.J. Kim, S.H. Hyun, S.G. Kim, M. Yashima, Effective ionic radius of Y3+ determined from lattice parameters of fluoritetype HfO2 and ZrO2 solid solutions, J. Am. Ceram. Soc., 77 (1994) 597–599.
  27. Y. Hiroshi, K. Eiji, I. Ichikawa, K. Katsuyoshi, M. Toshiyuki, H. Hajime, Multiple doping effect on the electrical conductivity in the (Ce1–x–yLaxMy)O2–δ (M = Ca, Sr) system, Electrochemistry, 68 (2000) 455–459.
  28. H. Yang, L. Jun, B. Han, S. Zhenjia, W. Ming, Z. Zhongxiang, Effect of octahedron tilt on the structure and magnetic properties of bismuth ferrite, J. Adv. Ceram., 9 (2020) 641–646.
  29. A. Phuruangrat, T. Thongtem, S. Satchawan, S. Thongtem, Photocatalytic activity of rugby-like Nd-doped ZnO particles activated by ultraviolet, Dig. J. Nanomater. Biostruct., 13 (2018) 625–630.
  30. S. Sitthichai, A. Phuruangrat, T. Thongtem, S. Thongtem, Influence of Mg dopant on photocatalytic properties of Mg-doped ZnO nanoparticles prepared by sol–gel method, J. Ceram. Soc. Jpn., 125 (2017) 122–124.
  31. K.-S. Yu, J.-Y. Shi, Z.-L. Zhang, Y.-M. Liang, W. Liu, Synthesis, characterization, and photocatalysis of ZnO and Er-doped ZnO, J. Nanomater., 2013 (2013) 372951, doi: 10.1155/2013/372951.
  32. H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, A. Marimuthu, Nanoflower-like yttrium-doped ZnO photocatalyst for the degradation of methylene blue dye, Photochem. Photobiol., 94 (2018) 237–246.
  33. A.F. Abdulrahman, Study the optical properties of the various deposition solutions of ZnO nanorods grown on glass substrate using chemical bath deposition technique, J. Ovonic Res., 16 (2020) 181–188.
  34. S. Guo, Z. Du, S. Dai, Analysis of Raman modes in Mn-doped ZnO nanocrystals, Phys. Status Solidi B, 246 (2009) 2329–2332.
  35. Z.A. Abdelouhab, D. Djouadi, A. Chelouche, T. Touam, Structural, morphological and Raman scattering studies of pure and Ce-doped ZnO nanostructures elaborated by hydrothermal route using nonorganic precursor, J. Sol-Gel Sci. Technol., 95 (2020) 136–145.
  36. M. Mazhdi, M.J. Tafreshi, The effects of gadolinium doping on the structural, morphological, optical, and photoluminescence properties of zinc oxide nanoparticles prepared by co-precipitation method, Appl. Phys. A, 124 (2018) 863, doi: 10.1007/s00339-018-2291-0.
  37. M. Faraz, M.Z. Ansari, N. Khare, Synthesis of nanostructure manganese doped zinc oxide/polystyrene thin films with excellent stability, transparency and superhydrophobicity, Mater. Chem. Phys., 211 (2018) 137–143.
  38. T.L. Tan, C.W. Lai, S.B.A. Hamid, Tunable band gap energy of Mn-doped ZnO nanoparticles using the coprecipitation technique, J. Nanomater., 2014 (2014) 371720, doi: 10.1155/2014/371720.
  39. L. Cheng, S.Y. Ma, X.B. Li, J. Luo, W.Q. Li, F.M. Li, Y.Z. Mao, T.T. Wang, Y.F. Li, Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning, Sens. Actuators, B, 200 (2014) 181–190.
  40. S.M. Suturin, A.M. Korovin, V.E. Bursian, L.V. Lutsev, V. Bourobina, N.L. Yakovlev, M. Montecchi, L. Pasquali, V. Ukleev, A. Vorobiev, A. Devishvili, N.S. Sokolov, Role of gallium diffusion in the formation of a magnetically dead layer at the Y3Fe5O12/Gd3Ga5O12 epitaxial interface, Phys. Rev. Mater., 2 (2018) 104404.
  41. Y.C. Cao, L. Zhao, J. Luo, K. Wang, B.P. Zhang, H. Yokota, Y. Ito, J.F. Li, Plasma etching behavior of Y2O3 ceramics: comparative study with Al2O3, Appl. Surf. Sci., 366 (2016) 304–309.
  42. L. Mai, N. Boysen, E. Subas, T. Arcos, D. Rogalla, G. Grundmeier, C. Bock, H.L. Lu, A. Devi, Water assisted atomic layer deposition of yttrium oxide using tris(N,N0-diisopropyl-2-dimethylamidoguanidinato) yttrium(III): process development, film characterization and functional properties, RSC Adv., 8 (2018) 4987–4994.
  43. T.B. Ivetić, M.R. Dimitrievska, I.O. Gúth, Lj.R. Dačanin, S.R. Lukić-Petrović, Structural and optical properties of europium-doped zinc oxide nanopowders prepared by mechanochemical and combustion reaction methods, J. Res. Phys., 36 (2012) 43–51.
  44. H. Chemingui, J.C. Mzali, T. Missaoui, M. Konyar, M. Smiri, H.C. Yatmaz, A. Hafiane, Characteristics of Er-doped zinc oxide layer: application in synthetic dye solution color removal, Desal. Water Treat., 209 (2021) 402–413.
  45. N. Duraisamy, K. Kandiah, R. Rajendran, S. Prabhu, R. Ramesh, G. Dhanaraj, Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment, Res. Chem. Intermed., 44 (2018) 5653–5667.
  46. Z. Jiao, Z. Liu, Z. Ma, Rodlike AgI/Ag2Mo2O7 heterojunctions with enhanced visible-light-driven photocatalytic activity, ACS Omega, 4 (2019) 7919–7930.