References

  1. K.A. Rosentrater, A review of corn masa processing residues: generation, properties, and potential utilization, Waste Manage., 26 (2006) 284–292.
  2. C. Valderrama-Bravo, E. Gutiérrez-Cortez, M. Contreras-Padilla, I. Rojas-Molina, J.C. Mosquera, A. Rojas Molina, F. Beristain, M.E. Rodríguez-García, Constant pressure filtration of lime water (nejayote) used to cook kernels in maize processing, J. Food Eng., 110 (2012) 478–486.
  3. G. Niño-Medina, E. Carvajal-Millán, J. Lizardi, A. Rascon- Chu, J.A. Marquez-Escalante, A. Gardea,
    A.L. Martínez-Lopez, V. Guerrero, Maize processing wastewater arabinoxylans: gelling capability and
    cross-linking content, Food Chem., 115 (2009) 1286–1290.
  4. A. Salmeron-Alcocer, N. Rodriguez-Mendoza, V. Pineda-Santiago, E. Cristiani-Urbina, C. Juarez-Ramirez, N. Ruiz- Ordaz, J. Galindez-Mayer, Aerobic treatment of maize processing wastewater (nejayote) in a single stream multi-stage reactor, J. Environ. Eng. Sci., 2 (2003) 401–406.
  5. B.A. Acosta-Estrada, S.O. Serna-Saldívar, J.A. Gutiérrez-Uribe, Chemopreventive effects of feruloyl putrescines from wastewater (nejayote) of lime-cooked white maize (Zea mays), J. Cereal Sci., 64 (2015) 23–28.
  6. E. Díaz-Montes, R. Castro-Muñoz, J. Yáñez-Fernández, An overview of nejayote, a nixtamalization byproduct, Ing. Agric. Biosis., 8 (2016) 41–60.
  7. E.A. López-Maldonado, M.T. Oropeza-Guzman, J.L. Jurado-Baizaval, A. Ochoa-Terán, Coagulation–flocculation mechanisms in wastewater treatment plant through zeta potential measurements, J. Hazard. Mater., 279 (2014) 1–10.
  8. E. España-Gamboa, J.A. Domínguez-Maldonado, R. Tapia-Tussel, J.S. Chale-Canul, L. Alzate-Gaviria, Corn industrial wastewater (nejayote): a promising substrate in Mexico for methane production in a coupled system (APCR-UASB), Environ. Sci. Pollut. Res., 25 (2018) 712–722.
  9. M.S. Argun, M.E. Argun, Treatment and alternative usage possibilities of a special wastewater: nejayote, J. Food Process Eng., 41 (2018) e12609 1–7, doi: 10.1111/jfpe.12609.
  10. R. Castro-Muñoz, C. Orozco-Álvarez, J. Yáñez-Fernández, Recovery of bioactive compounds from food processing wastewaters by ultra and nanofiltration: a review, Adv. Bioresour., 6 (2015) 152–158.
  11. R. Castro-Muñoz, V. Fíla, E. Durán-Páramo, A review of the primary by-product (nejayote) of the nixtamalization during maize processing: potential reuses, Waste Biomass Valorization, 10 (2019) 13–22.
  12. E. Civit, C. Duran de Bazúa, G. Engelmann, S. González, L. Hartmann, Anaerobic treatment of maize processing wastewater (nejayote) in a packed bed reactor cascade, Environ. Technol. Lett., 5 (1984) 89–96.
  13. R. Pedroza-Islas, C. Durán de Bazúa, Aerobic treatment of maize-processing wastewater in a 50-liter rotating biological reactor, Biol. Wastes, 32 (1990) 17–27.
  14. V.M. Luna-Pabello, M.A. Aladro-Lubel, C. Durán de Bazúa, Biomonitoring of wastewaters in treatment plants using ciliates, J. Ind. Microbiol. Biotechnol., 17 (1996) 62–68.
  15. C. Valderrama-Bravo, E. Gutiérrez-Cortez, M. Contreras- Padilla, A. Oaxaca-Luna, A. del Real,
    D.G. Espinosa-Arbelaez, M.E. Rodríguez-García, Physico-mechanic treatment of nixtamalization by-product (nejayote), CyTA J. Food, 11 (2013) 75–83.
  16. K.A. Suárez, S.M. Ponce, J.T. López, J.M. Cornejo, M.T. Oropeza, E.A. López, Eco-friendly innovation for nejayote coagulation– flocculation process using chitosan: evaluation through zeta potential measurements, Chem. Eng. J., 284 (2016) 536–542.
  17. J.L. García-Zamora, M. Sánchez-González, J.A. Lozano, J. Jáuregui, T. Zayas, V. Santacruz, F. Hernández, E. Torres, Enzymatic treatment of wastewater from the corn tortilla industry using chitosan as an adsorbent reduces the chemical oxygen demand and ferulic acid content, Process Biochem., 50 (2015) 125–133.
  18. B. Mazumdar, P.K. Chaudhari, Electrochemical treatment of biodigester effluent of maize- based starch industry: COD and color removal, Desal. Water Treat., 54 (2015) 1872–1880.
  19. I. González Martínez, M.A.G. Ramírez Romero, A. Torres Mendoza, M.R. Cruz Díaz, F.J. Almazán Ruiz,
    F. Vidal Caballero, D.E.P. Rivero Martínez, J.J. Ambríz García, Pat. MX2013008235A, 2015.
  20. M.H. Zonoozi, M.R.A. Moghaddam, M. Arami, Removal of acid red 398 dye from aqueous solutions by coagulation/flocculation process, Environ. Eng. Manage. J., 7 (2008) 695–699.
  21. M. Abdelaal, Using a Natural Coagulant for Treating Wastewater, 8th International Water Technology Conference, IWTC8, Alexandria, Egypt, 2004, pp. 781–791.
  22. F.S. Zhou, J. Li, L. Zhou, Y. Liu, Preparation and mechanism of a new enhanced flocculant based on bentonite for drinking water, Adv. Mater. Sci. Eng., 2015 (2015) 579513, doi: 10.1155/2015/579513.
  23. B. Bouras, T. Hocine, K.I. Benabadji, K. Benhabib, A. Mansri, Optimizing the coagulation/flocculation process for bentonite suspension with poly(acrylamide-co-(N-methyl- 4-vinylpyridinium tosylate)), Turk. J. Chem., 42 (2018) 748–758.
  24. G. Mouedhen, M. Feki, M. De Petris Wery, H.F. Ayedi, Behavior of aluminum electrodes in electrocoagulation process, J. Hazard. Mater., 150 (2008) 124–135.
  25. J.L. Trompette, H. Vergnes, On the crucial influence of some supporting electrolytes during electrocoagulation in the presence of aluminum electrodes, J. Hazard. Mater., 163 (2009) 1282–1288.
  26. S. Gao, M. Du, J. Tian, J. Yang, J. Yang, F. Ma, J. Nan, Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal, J. Hazard. Mater., 182 (2010) 827–834.
  27. A. Akyol, Treatment of paint manufacturing wastewater by electrocoagulation, Desalination, 285 (2012) 91–99.
  28. M.G. Arroyo, V. Pérez-Herranz, M.T. Montañés, J. García-Antón, J.L. Guiñón, Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor, J. Hazard. Mater., 169 (2009) 1127–1133.
  29. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
  30. E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods, Appl. Catal., B, 166–167 (2015) 603–643.
  31. S. Garcia-Segura, J.D. Ocon, M. Nan Chong, Electrochemical oxidation remediation of real wastewater effluents — a review, Process Saf. Environ. Prot., 113 (2018) 48–67.
  32. Y. Feng, D.W. Smith, J.R. Bolton, Photolysis of aqueous free chlorine species (HOCl and OCl) with 254 nm ultraviolet light, J. Environ. Eng. Sci., 6 (2007) 277–284.
  33. F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, A. De Battisti, Electrochemical incineration of glucose as a model organic substrate. II. Role of active chlorine mediation, J. Electrochem. Soc., 147 (2000) 592–596.
  34. D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage., 186 (2017) 24–41.
  35. Q.H. Nguyen, T. Watari, T. Yamaguchi, Y. Takimoto, K. Niihara, J.P. Wiff, T. Nakayama, COD removal from artificial wastewater by electrocoagulation using aluminum electrodes, Int. J. Electrochem. Sci., 15 (2020) 39–51.
  36. S. Capasso, S. Salvestrini, V. Roviello, M. Trifuoggi, P. Iovino, Electrochemical removal of humic acids from water using aluminum anode: influence of chloride ion and current parameters, J. Chem., 2019 (2019) 5401475, doi: 10.1155/2019/5401475.
  37. Ch. Wang, Q. Zhang, L. Jiang, Z. Hou, The organic pollutant characteristics of Lurgi coal gasification wastewater before and after ozonation, J. Chem., 2018 (2018) 1461673, doi: 10.1155/2018/1461673.