References
- K.A. Rosentrater, A review of corn masa processing residues:
generation, properties, and potential utilization, Waste
Manage., 26 (2006) 284–292.
- C. Valderrama-Bravo, E. Gutiérrez-Cortez, M. Contreras-Padilla,
I. Rojas-Molina, J.C. Mosquera, A. Rojas Molina, F. Beristain, M.E.
Rodríguez-García, Constant pressure filtration of lime water
(nejayote) used to cook kernels in maize processing, J. Food Eng.,
110 (2012) 478–486.
- G. Niño-Medina, E. Carvajal-Millán, J. Lizardi, A. Rascon-
Chu, J.A. Marquez-Escalante, A. Gardea,
A.L. Martínez-Lopez,
V. Guerrero, Maize processing wastewater arabinoxylans:
gelling capability and
cross-linking content, Food Chem.,
115 (2009) 1286–1290.
- A. Salmeron-Alcocer, N. Rodriguez-Mendoza, V. Pineda-Santiago, E. Cristiani-Urbina, C. Juarez-Ramirez, N. Ruiz-
Ordaz, J. Galindez-Mayer, Aerobic treatment of maize
processing wastewater (nejayote) in a single stream multi-stage
reactor, J. Environ. Eng. Sci., 2 (2003) 401–406.
- B.A. Acosta-Estrada, S.O. Serna-Saldívar, J.A. Gutiérrez-Uribe, Chemopreventive effects of feruloyl putrescines from
wastewater (nejayote) of lime-cooked white maize (Zea mays),
J. Cereal Sci., 64 (2015) 23–28.
- E. Díaz-Montes, R. Castro-Muñoz, J. Yáñez-Fernández, An
overview of nejayote, a nixtamalization byproduct, Ing. Agric.
Biosis., 8 (2016) 41–60.
- E.A. López-Maldonado, M.T. Oropeza-Guzman, J.L. Jurado-Baizaval, A. Ochoa-Terán, Coagulation–flocculation mechanisms
in wastewater treatment plant through zeta potential measurements,
J. Hazard. Mater., 279 (2014) 1–10.
- E. España-Gamboa, J.A. Domínguez-Maldonado, R. Tapia-Tussel, J.S. Chale-Canul, L. Alzate-Gaviria, Corn industrial
wastewater (nejayote): a promising substrate in Mexico for
methane production in a coupled system (APCR-UASB),
Environ. Sci. Pollut. Res., 25 (2018) 712–722.
- M.S. Argun, M.E. Argun, Treatment and alternative usage
possibilities of a special wastewater: nejayote, J. Food Process
Eng., 41 (2018) e12609 1–7, doi: 10.1111/jfpe.12609.
- R. Castro-Muñoz, C. Orozco-Álvarez, J. Yáñez-Fernández,
Recovery of bioactive compounds from food processing
wastewaters by ultra and nanofiltration: a review,
Adv. Bioresour., 6 (2015) 152–158.
- R. Castro-Muñoz, V. Fíla, E. Durán-Páramo, A review of the
primary by-product (nejayote) of the nixtamalization during
maize processing: potential reuses, Waste Biomass Valorization,
10 (2019) 13–22.
- E. Civit, C. Duran de Bazúa, G. Engelmann, S. González,
L. Hartmann, Anaerobic treatment of maize processing
wastewater (nejayote) in a packed bed reactor cascade, Environ.
Technol. Lett., 5 (1984) 89–96.
- R. Pedroza-Islas, C. Durán de Bazúa, Aerobic treatment of
maize-processing wastewater in a 50-liter rotating biological
reactor, Biol. Wastes, 32 (1990) 17–27.
- V.M. Luna-Pabello, M.A. Aladro-Lubel, C. Durán de Bazúa,
Biomonitoring of wastewaters in treatment plants using ciliates,
J. Ind. Microbiol. Biotechnol., 17 (1996) 62–68.
- C. Valderrama-Bravo, E. Gutiérrez-Cortez, M. Contreras-
Padilla, A. Oaxaca-Luna, A. del Real,
D.G. Espinosa-Arbelaez,
M.E. Rodríguez-García, Physico-mechanic treatment of
nixtamalization by-product (nejayote), CyTA J. Food, 11 (2013)
75–83.
- K.A. Suárez, S.M. Ponce, J.T. López, J.M. Cornejo, M.T. Oropeza,
E.A. López, Eco-friendly innovation for nejayote coagulation–
flocculation process using chitosan: evaluation through zeta
potential measurements, Chem. Eng. J., 284 (2016) 536–542.
- J.L. García-Zamora, M. Sánchez-González, J.A. Lozano,
J. Jáuregui, T. Zayas, V. Santacruz, F. Hernández, E. Torres,
Enzymatic treatment of wastewater from the corn tortilla
industry using chitosan as an adsorbent reduces the chemical
oxygen demand and ferulic acid content, Process Biochem.,
50 (2015) 125–133.
- B. Mazumdar, P.K. Chaudhari, Electrochemical treatment of
biodigester effluent of maize- based starch industry: COD and
color removal, Desal. Water Treat., 54 (2015) 1872–1880.
- I. González Martínez, M.A.G. Ramírez Romero, A. Torres
Mendoza, M.R. Cruz Díaz, F.J. Almazán Ruiz,
F. Vidal
Caballero, D.E.P. Rivero Martínez, J.J. Ambríz García, Pat.
MX2013008235A, 2015.
- M.H. Zonoozi, M.R.A. Moghaddam, M. Arami, Removal of acid
red 398 dye from aqueous solutions by coagulation/flocculation
process, Environ. Eng. Manage. J., 7 (2008) 695–699.
- M. Abdelaal, Using a Natural Coagulant for Treating
Wastewater, 8th International Water Technology Conference,
IWTC8, Alexandria, Egypt, 2004, pp. 781–791.
- F.S. Zhou, J. Li, L. Zhou, Y. Liu, Preparation and mechanism
of a new enhanced flocculant based on bentonite for
drinking water, Adv. Mater. Sci. Eng., 2015 (2015) 579513,
doi: 10.1155/2015/579513.
- B. Bouras, T. Hocine, K.I. Benabadji, K. Benhabib,
A. Mansri, Optimizing the coagulation/flocculation process
for bentonite suspension with poly(acrylamide-co-(N-methyl-
4-vinylpyridinium tosylate)), Turk. J. Chem., 42 (2018) 748–758.
- G. Mouedhen, M. Feki, M. De Petris Wery, H.F. Ayedi, Behavior
of aluminum electrodes in electrocoagulation process,
J. Hazard. Mater., 150 (2008) 124–135.
- J.L. Trompette, H. Vergnes, On the crucial influence of some
supporting electrolytes during electrocoagulation in the
presence of aluminum electrodes, J. Hazard. Mater., 163 (2009)
1282–1288.
- S. Gao, M. Du, J. Tian, J. Yang, J. Yang, F. Ma, J. Nan, Effects
of chloride ions on electro-coagulation-flotation process with
aluminum electrodes for algae removal, J. Hazard. Mater.,
182 (2010) 827–834.
- A. Akyol, Treatment of paint manufacturing wastewater by
electrocoagulation, Desalination, 285 (2012) 91–99.
- M.G. Arroyo, V. Pérez-Herranz, M.T. Montañés, J. García-Antón,
J.L. Guiñón, Effect of pH and chloride concentration on the
removal of hexavalent chromium in a batch electrocoagulation
reactor, J. Hazard. Mater., 169 (2009) 1127–1133.
- M. Panizza, G. Cerisola, Direct and mediated anodic oxidation
of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
- E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters
containing synthetic organic dyes by electrochemical
methods, Appl. Catal., B, 166–167 (2015) 603–643.
- S. Garcia-Segura, J.D. Ocon, M. Nan Chong, Electrochemical
oxidation remediation of real wastewater effluents — a review,
Process Saf. Environ. Prot., 113 (2018) 48–67.
- Y. Feng, D.W. Smith, J.R. Bolton, Photolysis of aqueous free
chlorine species (HOCl and OCl–) with 254 nm ultraviolet light,
J. Environ. Eng. Sci., 6 (2007) 277–284.
- F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, A. De
Battisti, Electrochemical incineration of glucose as a model
organic substrate. II. Role of active chlorine mediation,
J. Electrochem. Soc., 147 (2000) 592–596.
- D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri,
A comprehensive review of electrocoagulation for water
treatment: potentials and challenges, J. Environ. Manage.,
186 (2017) 24–41.
- Q.H. Nguyen, T. Watari, T. Yamaguchi, Y. Takimoto,
K. Niihara, J.P. Wiff, T. Nakayama, COD removal from artificial
wastewater by electrocoagulation using aluminum electrodes,
Int. J. Electrochem. Sci., 15 (2020) 39–51.
- S. Capasso, S. Salvestrini, V. Roviello, M. Trifuoggi,
P. Iovino, Electrochemical removal of humic acids from
water using aluminum anode: influence of chloride ion
and current parameters, J. Chem., 2019 (2019) 5401475,
doi: 10.1155/2019/5401475.
- Ch. Wang, Q. Zhang, L. Jiang, Z. Hou, The organic pollutant
characteristics of Lurgi coal gasification wastewater
before and after ozonation, J. Chem., 2018 (2018) 1461673,
doi: 10.1155/2018/1461673.