References
- Z. Carmen, S. Daniela, Textile Organic Dyes – Characteristics,
Polluting Effects and Separation/Elimination Procedures
from Industrial Effluents – A Critical Overview, T. Puzyn,
A. Mostrag-Szlichtyng, Eds., Organic Pollutants Ten Years After
the Stockholm Convention – Environmental and Analytical
Update, InTechOpen, 2012, doi: 10.5772/32373.
- A. Regti, M.R. Laamari, S.-E. Stiriba, M. El Haddad, Use of
response factorial design for process optimization of basic dye
adsorption onto activated carbon derived from Persea species,
Microchem. J., 130 (2017) 129–136.
- M.T. Uddin, M.A. Islam, S. Mahmud, M. Rukanuzzaman,
Adsorptive removal of methylene blue by tea waste, J. Hazard.
Mater., 164 (2009) 53–60.
- S.S. Auerbach, D.W. Bristol, J.C. Peckham, G.S. Travlos,
C.D. Hébert, R.S. Chhabra, Toxicity and carcinogenicity
studies of methylene blue trihydrate in F344N rats and B6C3F1
mice, Food Chem. Toxicol., 48 (2010) 169–177.
- J. Mittal, Permissible synthetic food dyes in India, Resonance,
25 (2020) 567–577.
- L. Tan, M. He, L. Song, X. Fu, S. Shi, Aerobic decolorization,
degradation and detoxification of azo dyes by a newly isolated
salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1,
Bioresour. Technol., 203 (2016) 287–294.
- X.Q. Yang, X.X. Zhao, C.Y. Liu, Y. Zheng, S.J. Qian, Decolorization
of azo, triphenylmethane and anthraquinone dyes by a newly
isolated Trametes sp. SQ01 and its laccase, Process Biochem.,
44 (2009) 1185–1189.
- A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma,
A. Mittal, Efficient batch and fixed-bed sequestration of
a basic dye using a novel variant of ordered mesoporous
carbon as adsorbent, Arabian J. Chem., 14 (2021) 103186,
doi: 10.1016/j.arabjc.2021.103186.
- D. Bousalah, H. Zazoua, A. Boudjemaa, A. Benmounah,
K. Bachari, Degradation of indigotine food dye by Fenton and
photo-Fenton processes, Int. J. Environ. Anal. Chem., (2020)
1–14, doi: 10.1080/03067319.2020.1786546.
- A. Tariq, S. Islam, I.A. Shaikh, M.W. Mushtaq, S. Ishaq,
Performance assessment of alum as coagulant for degradation
of disperse dyes from aqueous medium, Int. J. Environ. Anal.
Chem., (2020), doi: 10.1080/03067319.2020.1806254.
- V.B.K. Mullapudi, A. Salveru, A.J. Kora, An in-house
UV-photolysis setup for the rapid degradation of both cationic
and anionic dyes in dynamic mode through UV/H2O2-based
advanced oxidation process, Int. J. Environ. Anal. Chem.,
(2020), doi: 10.1080/03067319.2020.1800002.
- M.K. Oden, Treatment of CNC industry wastewater by
electrocoagulation technology: an application through
response surface methodology, Int. J. Environ. Anal. Chem.,
100 (2020) 1–19.
- M.Z. Bin Mukhlish, M.A. Islam, M.A. Rahman, S. Hossain,
M.A. Islam, M.T. Uddin, Facile solid-state synthesis of
heterojunction CeO2/TiO2 nanocomposite as an efficient
photocatalyst for the degradation of organic pollutants, Desal.
Water Treat., 230 (2021) 169–183.
- H. Daraei, A. Mittal, Investigation of adsorption performance
of activated carbon prepared from waste tire for the removal
of methylene blue dye from wastewater, Desal. Water Treat.,
90 (2017) 294–298.
- S.G. Muntean, A. Todea, S. Bakardjieva, C. Bologa, Removal of
non benzidine direct red dye from aqueous solution by using
natural sorbents: beech and silver fir, Desal. Water Treat.,
66 (2017) 235–250.
- F. Yasin, T. Javed, M.I. Jilani, S. Zafar, M.I. Din, Adsorption
of toxic crystal violet dye using rice husk: equilibrium,
kinetic, and thermodynamic study, Desal. Water Treat.,
227 (2021) 338–349.
- M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant,
M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann,
Nanostructured SnO2-ZnO heterojunction photocatalysts
showing enhanced photocatalytic activity for the degradation
of organic dyes, Inorg. Chem., 51 (2012) 7764–7773.
- Y. Anjaneyulu, N. Sreedhara Chary, D. Samuel Suman Raj,
Decolourization of industrial effluents – available methods and
emerging technologies – a review, Rev. Environ. Sci. Biotechnol.,
4 (2005) 245–273.
- J.W. Lee, S.P. Choi, R. Thiruvenkatachari, W.G. Shim, H. Moon,
Evaluation of the performance of adsorption and coagulation
processes for the maximum removal of reactive dyes, Dyes
Pigm., 69 (2006) 196–203.
- A. Singh, D.B. Pal, A. Mohammad, A. Alhazmi, S. Haque,
T. Yoon, N. Srivastava, V.K. Gupta, Biological remediation
technologies for dyes and heavy metals in wastewater
treatment: new insight, Bioresour. Technol., 343 (2022) 126154,
doi: 10.1016/j.biortech.2021.126154.
- A. Mittal, J. Mittal, Hen Feather: A Remarkable Adsorbent for
Dye Removal, S.K. Sharma, Ed., Green Chemistry for Dyes
Removal from Wastewater: Research Trends and Applications,
Co-published by John Wiley & Sons, Inc., Hoboken, New
Jersey, and Scrivener Publishing LLC, Salem, Massachusetts,
Published Simultaneously in Canada, 2015, pp. 409–457.
doi: 10.1002/9781118721001.ch11
- A. Patel, S. Soni, J. Mittal, A. Mittal, C. Arora, Sequestration of
crystal violet from aqueous solution using ash of black turmeric
rhizome, Desal. Water Treat., 220 (2021) 342–352.
- J. Mittal, R. Ahmad, A. Mariyam, V.K. Gupta, A. Mittal,
Expeditious and enhanced sequestration of heavy metal ions
from aqueous environment by papaya peel carbon: a green and
low-cost adsorbent, Desal. Water Treat., 210 (2021) 365–376.
- B. Haddad, A. Mittal, J. Mittal, A. Paolone, D. Villemin,
M. Debdab, G. Mimanne, A. Habibi, Z. Hamidi, M. Boumediene, E. habib Belarbi, Synthesis and characterization
of eggshell (ES) and eggshell with membrane (ESM) modified
by ionic liquids, Chem. Data Collect., 33 (2021) 100717,
doi: 10.1016/j.cdc.2021.100717.
- C. Arora, P. Kumar, S. Soni, J. Mittal, A. Mittal, B. Singh, Efficient
removal of malachite green dye from aqueous solution using
curcuma caesia based activated carbon, Desal. Water Treat.,
195 (2020) 341–352.
- J. Mittal, R. Ahmad, A. Mittal, Kahwa tea (Camellia sinensis)
carbon — a novel and green low-cost adsorbent for the
sequestration of titan yellow dye from its aqueous solutions,
Desal. Water Treat., 227 (2021) 404–411.
- M.Z. Bin Mukhlish, S. Hossain, A. Rahman, T. Uddin, Kinetic
and equilibrium studies of the activated carbon prepared
from jackfruit leaves for the adsorption of methyl orange,
Desal. Water Treat., 256 (2022) 253–264.
- A.T.S. Konan, R. Richard, C. Andriantsiferana, K.B. Yao,
M.H. Manero, Low-cost activated carbon for adsorption and
heterogeneous ozonation of phenolic wastewater, Desal. Water
Treat., 163 (2019) 336–346.
- M.S. Vohra, Adsorption-based removal of gas-phase benzene
using granular activated carbon (GAC) produced from date
palm pits, Arabian J. Sci. Eng., 40 (2015) 3007–3017.
- Ş. Yüksel, R. Orhan, The removal of Cr(VI) from aqueous
solution by activated carbon prepared from apricot, peach
stone and almond shell mixture in a fixed-bed column, Arabian
J. Sci. Eng., 44 (2019) 5345–5357.
- M. Hosseinzehi, M. Khatebasreh, A. Dalvand, Modeling of
Reactive Black 5 azo dye adsorption from aqueous solution on
activated carbon prepared from poplar sawdust using response
surface methodology, Int. J. Environ. Anal. Chem., (2020),
doi: 10.1080/03067319.2020.1819991.
- S.A. Patil, U.P. Suryawanshi, N.S. Harale, S.K. Patil,
M.M. Vadiyar, M.N. Luwang, M.A. Anuse, J.H. Kim,
S.S. Kolekar, Adsorption of toxic Pb(II) on activated carbon
derived from agriculture waste (Mahogany fruit shell):
isotherm, kinetic and thermodynamic study, Int. J. Environ.
Anal. Chem., (2020), doi: 10.1080/03067319.2020.1849648.
- O.O. Namal, E. Kalipci, Adsorption kinetics of methylene
blue removal from aqueous solutions using potassium
hydroxide (KOH) modified apricot kernel shells, Int. J. Environ.
Anal. Chem., 100 (2020) 1549–1565.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic
dye on high-surface-area activated carbon prepared from
coconut husk: equilibrium, kinetic and thermodynamic studies,
J. Hazard. Mater., 154 (2008) 337–346.
- R.G. Pereira, C.M. Veloso, N.M. Da Silva, L.F. De Sousa,
R.C.F. Bonomo, A.O. De Souza, M.O. Da Guarda Souza, R. Da
Costa Ilhéu Fontan, Preparation of activated carbons from cocoa
shells and siriguela seeds using H3PO4 and ZnCl2 as activating
agents for BSA and α-lactalbumin adsorption, Fuel Process.
Technol., 126 (2014) 476–486.
- E.W. Nsi, A.E. Akpakpan, E.J. Ukpong, U.D. Akpabio,
Preparation and characterization of activated carbon from
Hura crepitans Linn seed shells, Int. J. Eng. Sci., 5 (2016)
38–41.
- J. Yang, K. Qiu, Preparation of activated carbons from walnut
shells via vacuum chemical activation and their application
for methylene blue removal, Chem. Eng. J., 165 (2010) 209–217.
- J. Ndi Nsami, J. Ketcha Mbadcam, The adsorption
efficiency of chemically prepared activated carbon from
cola nut shells by ZnCl2 on methylene blue, J. Chem., (2013),
doi: 10.1155/2013/469170.
- M.B. Wu, R.C. Li, X.J. He, H.B. Zhang, W. Bin Sui, M.H. Tan,
Microwave-assisted preparation of peanut shell-based activated
carbons and their use in electrochemical capacitors,
Xinxing Tan Cailiao/New Carbon Mater., 30 (2015) 86–91.
- P.Z. Guo, Q.Q. Ji, L.L. Zhang, S.Y. Zhao, X.S. Zhao, Preparation
and characterization of peanut shell-based microporous
carbons as electrode materials for supercapacitors, Wuli
Huaxue Xuebao/Acta Phys. Chim. Sin., 27 (2011) 2836–2840.
- L.C. Romero, A. Bonomo, E.E. Gonzo, Acid-activated carbons
from peanut shells: synthesis, characterization and uptake
of organic compounds from aqueous solutions, Adsorpt.
Sci. Technol., 21 (2003) 617–626.
- S. Soni, P.K. Bajpai, D. Bharti, J. Mittal, C. Arora, Removal of
crystal violet from aqueous solution using iron based metal
organic framework, Desal. Water Treat., 205 (2020) 386–399.
- S. Li, S. Xu, S. Liu, C. Yang, Q. Lu, Fast pyrolysis of biomass in
free-fall reactor for hydrogen-rich gas, Fuel Process. Technol.,
85 (2004) 1201–1211.
- E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of
pore volume and area distributions in porous substances.
I. Computations from nitrogen isotherms, J. Am. Chem. Soc.,
73 (1951) 373–380.
- W.D. Harkins, G. Jura, Surfaces of solids. XII. An absolute
method for the determination of the area of a finely divided
crystalline solid, J. Am. Chem. Soc., 66 (1944) 1362–1366.
- A. Boonpoke, S. Chiarakorn, N. Laosiripojana, S. Towprayoon,
A. Chidthaisong, Synthesis of activated carbon and MCM-41
from bagasse and rice husk and their carbon dioxide adsorption
capacity, J. Sustain. Environ., 2 (2013) 77–81.
- Suhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Lignin - from
natural adsorbent to activated carbon: a review, Bioresour.
Technol., 98 (2007) 2301–2312.
- B. Cagnon, X. Py, A. Guillot, F. Stoeckli, G. Chambat,
Contributions of hemicellulose, cellulose and lignin to the mass
and the porous properties of chars and steam activated carbons
from various lignocellulosic precursors, Bioresour. Technol.,
100 (2009) 292–298.
- S.J. Hitchcock, B. McEnaney, S.J. Watling, Fibrous active carbons
from coir, J. Chem. Technol. Biotechnol. Chem. Technol.,
33 (1983) 157–163.
- S. Joshi, B.P. Pokharel, Preparation and characterization of
activated carbon from lapsi (Choerospondias axillaris) seed stone
by chemical activation with potassium hydroxide, J. Inst. Eng.,
9 (2014) 79–88.
- Y. Chen, B. Huang, M. Huang, B. Cai, On the preparation and
characterization of activated carbon from mangosteen shell,
J. Taiwan Inst. Chem. Eng., 42 (2011) 837–842.
- C. Saka, BET, TG-DTG, FT-IR, SEM, iodine number analysis
and preparation of activated carbon from acorn shell by
chemical activation with ZnCl2, J. Anal. Appl. Pyrolysis,
95 (2012) 21–24.
- Y. Sudaryanto, S.B. Hartono, W. Irawaty, H. Hindarso,
S. Ismadji, High surface area activated carbon prepared from
cassava peel by chemical activation, Bioresour. Technol.,
97 (2006) 734–739.
- D. Angin, E. Altintig, T.E. Köse, Influence of process
parameters on the surface and chemical properties of activated
carbon obtained from biochar by chemical activation,
Bioresour. Technol., 148 (2013) 542–549.
- K. Yang, J. Peng, H. Xia, L. Zhang, C. Srinivasakannan, S. Guo,
Textural characteristics of activated carbon by single step CO2
activation from coconut shells, J. Taiwan Inst. Chem. Eng.,
41 (2010) 367–372.
- H. Mao, D. Zhou, Z. Hashisho, S. Wang, H. Chen, H. Wang,
Preparation of pinewood- and wheat straw-based activated
carbon via a microwave-assisted potassium hydroxide
treatment and an analysis of the effects of the microwave
activation conditions, BioResources, 10 (2015) 809–821.
- R.L. Tseng, S.K. Tseng, Pore structure and adsorption
performance of the KOH-activated carbons prepared from
corncob, J. Colloid Interface Sci., 287 (2005) 428–437.
- J. Andas, M.L.A. Rahman, M.S.M. Yahya, Preparation
and characterization of activated carbon from palm
kernel shell, IOP Conf. Ser.: Mater. Sci. Eng., 226 (2017),
doi: 10.1088/1757-899X/226/1/012156.
- R.M. Shrestha, Effect of preparation parameters on methylene
blue number of activated carbons prepared from a locally
available material, J. Inst. Eng., 12 (2017) 169–174.
- L. Khezami, A. Chetouani, B. Taouk, R. Capart, Production and
characterisation of activated carbon from wood components in
powder: cellulose, lignin, xylan, Powder Technol., 157 (2005)
48–56.
- S. Cheng, L. Zhang, H. Xia, J. Peng, J. Shu, C. Li, Ultrasound
and microwave-assisted preparation of Fe-activated carbon as
an effective low-cost adsorbent for dyes wastewater treatment,
RSC Adv., 6 (2016) 78936–78946.
- T. Otowa, Y. Nojima, T. Miyazaki, Development of KOH
activated high surface area carbon and its application to
drinking water purification, Carbon N.Y., 35 (1997) 1315–1319.
- S.S. Balaji, M. Sathish, Supercritical fluid processing of nitric acid
treated nitrogen doped graphene with enhanced electrochemical
supercapacitance, RSC Adv., 4 (2014) 52256–52262.
- Y. Ji, T. Li, L. Zhu, X. Wang, Q. Lin, Preparation of activated
carbons by microwave heating KOH activation, Appl. Surf. Sci.,
254 (2007) 506–512.
- Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li, Y. Wang,
Comparisons of porous, surface chemistry and adsorption
properties of carbon derived from Enteromorpha prolifera activated
by H4P2O7 and KOH, Chem. Eng. J., 232 (2013) 582–590.
- A.H. Mahvi, A. Dalvand, Kinetic and equilibrium studies on the
adsorption of Direct red 23 dye from aqueous solution using
montmorillonite nanoclay, Water Qual. Res. J. Can., 55 (2020)
132–144.
- M.T. Uddin, M.A. Rahman, M. Rukanuzzaman, M.A. Islam,
A potential low cost adsorbent for the removal of cationic dyes
from aqueous solutions, Appl. Water Sci., 7 (2017) 2831–2842.
- M. Tamez Uddin, M. Rukanuzzaman, M. Maksudur Rahman
Khan, M. Akhtarul Islam, Adsorption of methylene blue
from aqueous solution by jackfruit (Artocarpus heteropyllus)
leaf powder: a fixed-bed column study, J. Environ. Manage.,
90 (2009) 3443–3450.
- U.J. Etim, S.A. Umoren, U.M. Eduok, Coconut coir dust as a low
cost adsorbent for the removal of cationic dye from aqueous
solution, J. Saudi Chem. Soc., 20 (2016) S67–S76.
- T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and
mechanism of removal of methylene blue from aqueous
solution by adsorption onto pine cone biomass of Pinus radiata,
Water Air Soil Pollut., 218 (2011) 499–515.
- N. Gopal, M. Asaithambi, P. Sivakumar, V. Sivakumar,
Adsorption studies of a direct dye using polyaniline coated
activated carbon prepared from Prosopis juliflora, J. Water
Process Eng., 2 (2014) 87–95.
- R. Aravindhan, J.R. Rao, B.U. Nair, Removal of basic yellow
dye from aqueous solution by sorption on green alga Caulerpa
scalpelliformis, J. Hazard. Mater., 142 (2007) 68–76.
- A. Hebeish, M.A. Ramadan, E. Abdel-Halim, A. Abo-Okeil,
An effective adsorbent based on sawdust for removal of direct
dye from aqueous solutions, Clean Technol. Environ. Policy,
13 (2011) 713–718.
- G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various
pollutants from aqueous solutions on to activated carbon, Water
Res., 19 (1985) 491–495.
- N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and
interpretation of adsorption isotherms, J. Chem., 2017 (2017),
doi: 10.1155/2017/3039817.
- S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for
basic dye adsorption by peat in single and binary component
systems, J. Colloid Interface Sci., 280 (2004) 322–333.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–471.
- M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed,
Mesoporous activated carbon prepared from NaOH activation
of rattan (Lacosperma secundiflorum) hydrochar for methylene
blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
- Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorption of cationic
dyes on activated carbon obtained from waste Elaeagnus stone,
Adsorpt. Sci. Technol., 34 (2016) 512–525.
- L. Borah, M. Goswami, P. Phukan, Adsorption of methylene
blue and eosin yellow using porous carbon prepared from tea
waste: adsorption equilibrium, kinetics and thermodynamics
study, J. Environ. Chem. Eng., 3 (2015) 1018–1028.
- G. Karaçetin, S. Sivrikaya, M. Imamotlu, Adsorption of
methylene blue from aqueous solutions by activated carbon
prepared from hazelnut husk using zinc chloride, J. Anal. Appl.
Pyrolysis, 110 (2014) 270–276.
- J.J. Gao, Y.B. Qin, T. Zhou, D.D. Cao, P. Xu, D. Hochstetter,
Y.F. Wang, Adsorption of methylene blue onto activated
carbon produced from tea (Camellia sinensis L.) seed shells:
kinetics, equilibrium, and thermodynamics studies, J. Zhejiang
Univ. Sci. B, 14 (2013) 650–658.
- V. Bello-Huitle, P. Atenco-Fernández, R. Reyes-Mazzoco,
Adsorption studies of methylene blue and phenol onto pecan
and castile nutshells prepared by chemical activation, Rev. Mex.
Ing. Quim., 9 (2010) 313–322.
- H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization
of activated carbon from cotton stalk by microwave assisted
chemical activation-application in methylene blue adsorption
from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
- O.S. Bello, I.A. Adeogun, J.C. Ajaelu, E.O. Fehintola, Adsorption
of methylene blue onto activated carbon derived from
periwinkle shells: kinetics and equilibrium studies, Chem.
Ecol., 24 (2008) 285–295.
- B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Adsorption of basic
dye (methylene blue) onto activated carbon prepared from
rattan sawdust, Dyes Pigm., 75 (2007) 143–149.
- A.L. Ahmad, M.M. Loh, J.A. Aziz, Preparation and
characterization of activated carbon from oil palm wood and its
evaluation on methylene blue adsorption, Dyes Pigm., 75 (2007)
263–272.
- S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt
doped iron based MOF for enhanced removal and recovery of
methylene blue dye from waste water, J. Mol. Liq., 314 (2020),
doi: 10.1016/j.molliq.2020.113642.
- C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai,
Iron based metal organic framework for efficient removal
of methylene blue dye from industrial waste, J. Mol. Liq.,
284 (2019) 343–352.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances (Zur theorie der sogenannten adsorption
geloster stoffe), Kungliga Svenska Vetenskapsakademiens,
Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber,
G. Morvan, Efficient anionic dye adsorption on natural
untreated clay: kinetic study and thermodynamic parameters,
Desalination, 275 (2011) 74–81.
- F. Krika, O. el F. Benlahbib, Removal of methyl orange from
aqueous solution via adsorption on cork as a natural and lowcoast
adsorbent: equilibrium, kinetic and thermodynamic study
of removal process, Desal. Water Treat., 53 (2015) 3711–3723.