References

  1. Z. Carmen, S. Daniela, Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview, T. Puzyn, A. Mostrag-Szlichtyng, Eds., Organic Pollutants Ten Years After the Stockholm Convention – Environmental and Analytical Update, InTechOpen, 2012, doi: 10.5772/32373.
  2. A. Regti, M.R. Laamari, S.-E. Stiriba, M. El Haddad, Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species, Microchem. J., 130 (2017) 129–136.
  3. M.T. Uddin, M.A. Islam, S. Mahmud, M. Rukanuzzaman, Adsorptive removal of methylene blue by tea waste, J. Hazard. Mater., 164 (2009) 53–60.
  4. S.S. Auerbach, D.W. Bristol, J.C. Peckham, G.S. Travlos, C.D. Hébert, R.S. Chhabra, Toxicity and carcinogenicity studies of methylene blue trihydrate in F344N rats and B6C3F1 mice, Food Chem. Toxicol., 48 (2010) 169–177.
  5. J. Mittal, Permissible synthetic food dyes in India, Resonance, 25 (2020) 567–577.
  6. L. Tan, M. He, L. Song, X. Fu, S. Shi, Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1, Bioresour. Technol., 203 (2016) 287–294.
  7. X.Q. Yang, X.X. Zhao, C.Y. Liu, Y. Zheng, S.J. Qian, Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase, Process Biochem., 44 (2009) 1185–1189.
  8. A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, A. Mittal, Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent, Arabian J. Chem., 14 (2021) 103186, doi: 10.1016/j.arabjc.2021.103186.
  9. D. Bousalah, H. Zazoua, A. Boudjemaa, A. Benmounah, K. Bachari, Degradation of indigotine food dye by Fenton and photo-Fenton processes, Int. J. Environ. Anal. Chem., (2020) 1–14, doi: 10.1080/03067319.2020.1786546.
  10. A. Tariq, S. Islam, I.A. Shaikh, M.W. Mushtaq, S. Ishaq, Performance assessment of alum as coagulant for degradation of disperse dyes from aqueous medium, Int. J. Environ. Anal. Chem., (2020), doi: 10.1080/03067319.2020.1806254.
  11. V.B.K. Mullapudi, A. Salveru, A.J. Kora, An in-house UV-photolysis setup for the rapid degradation of both cationic and anionic dyes in dynamic mode through UV/H2O2-based advanced oxidation process, Int. J. Environ. Anal. Chem., (2020), doi: 10.1080/03067319.2020.1800002.
  12. M.K. Oden, Treatment of CNC industry wastewater by electrocoagulation technology: an application through response surface methodology, Int. J. Environ. Anal. Chem., 100 (2020) 1–19.
  13. M.Z. Bin Mukhlish, M.A. Islam, M.A. Rahman, S. Hossain, M.A. Islam, M.T. Uddin, Facile solid-state synthesis of heterojunction CeO2/TiO2 nanocomposite as an efficient photocatalyst for the degradation of organic pollutants, Desal. Water Treat., 230 (2021) 169–183.
  14. H. Daraei, A. Mittal, Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater, Desal. Water Treat., 90 (2017) 294–298.
  15. S.G. Muntean, A. Todea, S. Bakardjieva, C. Bologa, Removal of non benzidine direct red dye from aqueous solution by using natural sorbents: beech and silver fir, Desal. Water Treat., 66 (2017) 235–250.
  16. F. Yasin, T. Javed, M.I. Jilani, S. Zafar, M.I. Din, Adsorption of toxic crystal violet dye using rice husk: equilibrium, kinetic, and thermodynamic study, Desal. Water Treat., 227 (2021) 338–349.
  17. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes, Inorg. Chem., 51 (2012) 7764–7773.
  18. Y. Anjaneyulu, N. Sreedhara Chary, D. Samuel Suman Raj, Decolourization of industrial effluents – available methods and emerging technologies – a review, Rev. Environ. Sci. Biotechnol., 4 (2005) 245–273.
  19. J.W. Lee, S.P. Choi, R. Thiruvenkatachari, W.G. Shim, H. Moon, Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes, Dyes Pigm., 69 (2006) 196–203.
  20. A. Singh, D.B. Pal, A. Mohammad, A. Alhazmi, S. Haque, T. Yoon, N. Srivastava, V.K. Gupta, Biological remediation technologies for dyes and heavy metals in wastewater treatment: new insight, Bioresour. Technol., 343 (2022) 126154, doi: 10.1016/j.biortech.2021.126154.
  21. A. Mittal, J. Mittal, Hen Feather: A Remarkable Adsorbent for Dye Removal, S.K. Sharma, Ed., Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications, Co-published by John Wiley & Sons, Inc., Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts, Published Simultaneously in Canada, 2015, pp. 409–457. doi: 10.1002/9781118721001.ch11
  22. A. Patel, S. Soni, J. Mittal, A. Mittal, C. Arora, Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome, Desal. Water Treat., 220 (2021) 342–352.
  23. J. Mittal, R. Ahmad, A. Mariyam, V.K. Gupta, A. Mittal, Expeditious and enhanced sequestration of heavy metal ions from aqueous environment by papaya peel carbon: a green and low-cost adsorbent, Desal. Water Treat., 210 (2021) 365–376.
  24. B. Haddad, A. Mittal, J. Mittal, A. Paolone, D. Villemin, M. Debdab, G. Mimanne, A. Habibi, Z. Hamidi, M. Boumediene, E. habib Belarbi, Synthesis and characterization of eggshell (ES) and eggshell with membrane (ESM) modified by ionic liquids, Chem. Data Collect., 33 (2021) 100717, doi: 10.1016/j.cdc.2021.100717.
  25. C. Arora, P. Kumar, S. Soni, J. Mittal, A. Mittal, B. Singh, Efficient removal of malachite green dye from aqueous solution using curcuma caesia based activated carbon, Desal. Water Treat., 195 (2020) 341–352.
  26. J. Mittal, R. Ahmad, A. Mittal, Kahwa tea (Camellia sinensis) carbon — a novel and green low-cost adsorbent for the sequestration of titan yellow dye from its aqueous solutions, Desal. Water Treat., 227 (2021) 404–411.
  27. M.Z. Bin Mukhlish, S. Hossain, A. Rahman, T. Uddin, Kinetic and equilibrium studies of the activated carbon prepared from jackfruit leaves for the adsorption of methyl orange, Desal. Water Treat., 256 (2022) 253–264.
  28. A.T.S. Konan, R. Richard, C. Andriantsiferana, K.B. Yao, M.H. Manero, Low-cost activated carbon for adsorption and heterogeneous ozonation of phenolic wastewater, Desal. Water Treat., 163 (2019) 336–346.
  29. M.S. Vohra, Adsorption-based removal of gas-phase benzene using granular activated carbon (GAC) produced from date palm pits, Arabian J. Sci. Eng., 40 (2015) 3007–3017.
  30. Ş. Yüksel, R. Orhan, The removal of Cr(VI) from aqueous solution by activated carbon prepared from apricot, peach stone and almond shell mixture in a fixed-bed column, Arabian J. Sci. Eng., 44 (2019) 5345–5357.
  31. M. Hosseinzehi, M. Khatebasreh, A. Dalvand, Modeling of Reactive Black 5 azo dye adsorption from aqueous solution on activated carbon prepared from poplar sawdust using response surface methodology, Int. J. Environ. Anal. Chem., (2020), doi: 10.1080/03067319.2020.1819991.
  32. S.A. Patil, U.P. Suryawanshi, N.S. Harale, S.K. Patil, M.M. Vadiyar, M.N. Luwang, M.A. Anuse, J.H. Kim, S.S. Kolekar, Adsorption of toxic Pb(II) on activated carbon derived from agriculture waste (Mahogany fruit shell): isotherm, kinetic and thermodynamic study, Int. J. Environ. Anal. Chem., (2020), doi: 10.1080/03067319.2020.1849648.
  33. O.O. Namal, E. Kalipci, Adsorption kinetics of methylene blue removal from aqueous solutions using potassium hydroxide (KOH) modified apricot kernel shells, Int. J. Environ. Anal. Chem., 100 (2020) 1549–1565.
  34. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2008) 337–346.
  35. R.G. Pereira, C.M. Veloso, N.M. Da Silva, L.F. De Sousa, R.C.F. Bonomo, A.O. De Souza, M.O. Da Guarda Souza, R. Da Costa Ilhéu Fontan, Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as activating agents for BSA and α-lactalbumin adsorption, Fuel Process. Technol., 126 (2014) 476–486.
  36. E.W. Nsi, A.E. Akpakpan, E.J. Ukpong, U.D. Akpabio, Preparation and characterization of activated carbon from Hura crepitans Linn seed shells, Int. J. Eng. Sci., 5 (2016) 38–41.
  37. J. Yang, K. Qiu, Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal, Chem. Eng. J., 165 (2010) 209–217.
  38. J. Ndi Nsami, J. Ketcha Mbadcam, The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue, J. Chem., (2013), doi: 10.1155/2013/469170.
  39. M.B. Wu, R.C. Li, X.J. He, H.B. Zhang, W. Bin Sui, M.H. Tan, Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors, Xinxing Tan Cailiao/New Carbon Mater., 30 (2015) 86–91.
  40. P.Z. Guo, Q.Q. Ji, L.L. Zhang, S.Y. Zhao, X.S. Zhao, Preparation and characterization of peanut shell-based microporous carbons as electrode materials for supercapacitors, Wuli Huaxue Xuebao/Acta Phys. Chim. Sin., 27 (2011) 2836–2840.
  41. L.C. Romero, A. Bonomo, E.E. Gonzo, Acid-activated carbons from peanut shells: synthesis, characterization and uptake of organic compounds from aqueous solutions, Adsorpt. Sci. Technol., 21 (2003) 617–626.
  42. S. Soni, P.K. Bajpai, D. Bharti, J. Mittal, C. Arora, Removal of crystal violet from aqueous solution using iron based metal organic framework, Desal. Water Treat., 205 (2020) 386–399.
  43. S. Li, S. Xu, S. Liu, C. Yang, Q. Lu, Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas, Fuel Process. Technol., 85 (2004) 1201–1211.
  44. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  45. W.D. Harkins, G. Jura, Surfaces of solids. XII. An absolute method for the determination of the area of a finely divided crystalline solid, J. Am. Chem. Soc., 66 (1944) 1362–1366.
  46. A. Boonpoke, S. Chiarakorn, N. Laosiripojana, S. Towprayoon, A. Chidthaisong, Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity, J. Sustain. Environ., 2 (2013) 77–81.
  47. Suhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Lignin - from natural adsorbent to activated carbon: a review, Bioresour. Technol., 98 (2007) 2301–2312.
  48. B. Cagnon, X. Py, A. Guillot, F. Stoeckli, G. Chambat, Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors, Bioresour. Technol., 100 (2009) 292–298.
  49. S.J. Hitchcock, B. McEnaney, S.J. Watling, Fibrous active carbons from coir, J. Chem. Technol. Biotechnol. Chem. Technol., 33 (1983) 157–163.
  50. S. Joshi, B.P. Pokharel, Preparation and characterization of activated carbon from lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide, J. Inst. Eng., 9 (2014) 79–88.
  51. Y. Chen, B. Huang, M. Huang, B. Cai, On the preparation and characterization of activated carbon from mangosteen shell, J. Taiwan Inst. Chem. Eng., 42 (2011) 837–842.
  52. C. Saka, BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2, J. Anal. Appl. Pyrolysis, 95 (2012) 21–24.
  53. Y. Sudaryanto, S.B. Hartono, W. Irawaty, H. Hindarso, S. Ismadji, High surface area activated carbon prepared from cassava peel by chemical activation, Bioresour. Technol., 97 (2006) 734–739.
  54. D. Angin, E. Altintig, T.E. Köse, Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation, Bioresour. Technol., 148 (2013) 542–549.
  55. K. Yang, J. Peng, H. Xia, L. Zhang, C. Srinivasakannan, S. Guo, Textural characteristics of activated carbon by single step CO2 activation from coconut shells, J. Taiwan Inst. Chem. Eng., 41 (2010) 367–372.
  56. H. Mao, D. Zhou, Z. Hashisho, S. Wang, H. Chen, H. Wang, Preparation of pinewood- and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions, BioResources, 10 (2015) 809–821.
  57. R.L. Tseng, S.K. Tseng, Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob, J. Colloid Interface Sci., 287 (2005) 428–437.
  58. J. Andas, M.L.A. Rahman, M.S.M. Yahya, Preparation and characterization of activated carbon from palm kernel shell, IOP Conf. Ser.: Mater. Sci. Eng., 226 (2017), doi: 10.1088/1757-899X/226/1/012156.
  59. R.M. Shrestha, Effect of preparation parameters on methylene blue number of activated carbons prepared from a locally available material, J. Inst. Eng., 12 (2017) 169–174.
  60. L. Khezami, A. Chetouani, B. Taouk, R. Capart, Production and characterisation of activated carbon from wood components in powder: cellulose, lignin, xylan, Powder Technol., 157 (2005) 48–56.
  61. S. Cheng, L. Zhang, H. Xia, J. Peng, J. Shu, C. Li, Ultrasound and microwave-assisted preparation of Fe-activated carbon as an effective low-cost adsorbent for dyes wastewater treatment, RSC Adv., 6 (2016) 78936–78946.
  62. T. Otowa, Y. Nojima, T. Miyazaki, Development of KOH activated high surface area carbon and its application to drinking water purification, Carbon N.Y., 35 (1997) 1315–1319.
  63. S.S. Balaji, M. Sathish, Supercritical fluid processing of nitric acid treated nitrogen doped graphene with enhanced electrochemical supercapacitance, RSC Adv., 4 (2014) 52256–52262.
  64. Y. Ji, T. Li, L. Zhu, X. Wang, Q. Lin, Preparation of activated carbons by microwave heating KOH activation, Appl. Surf. Sci., 254 (2007) 506–512.
  65. Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li, Y. Wang, Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH, Chem. Eng. J., 232 (2013) 582–590.
  66. A.H. Mahvi, A. Dalvand, Kinetic and equilibrium studies on the adsorption of Direct red 23 dye from aqueous solution using montmorillonite nanoclay, Water Qual. Res. J. Can., 55 (2020) 132–144.
  67. M.T. Uddin, M.A. Rahman, M. Rukanuzzaman, M.A. Islam, A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions, Appl. Water Sci., 7 (2017) 2831–2842.
  68. M. Tamez Uddin, M. Rukanuzzaman, M. Maksudur Rahman Khan, M. Akhtarul Islam, Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed column study, J. Environ. Manage., 90 (2009) 3443–3450.
  69. U.J. Etim, S.A. Umoren, U.M. Eduok, Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution, J. Saudi Chem. Soc., 20 (2016) S67–S76.
  70. T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata, Water Air Soil Pollut., 218 (2011) 499–515.
  71. N. Gopal, M. Asaithambi, P. Sivakumar, V. Sivakumar, Adsorption studies of a direct dye using polyaniline coated activated carbon prepared from Prosopis juliflora, J. Water Process Eng., 2 (2014) 87–95.
  72. R. Aravindhan, J.R. Rao, B.U. Nair, Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis, J. Hazard. Mater., 142 (2007) 68–76.
  73. A. Hebeish, M.A. Ramadan, E. Abdel-Halim, A. Abo-Okeil, An effective adsorbent based on sawdust for removal of direct dye from aqueous solutions, Clean Technol. Environ. Policy, 13 (2011) 713–718.
  74. G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various pollutants from aqueous solutions on to activated carbon, Water Res., 19 (1985) 491–495.
  75. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017), doi: 10.1155/2017/3039817.
  76. S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci., 280 (2004) 322–333.
  77. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  78. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  79. M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
  80. Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorption of cationic dyes on activated carbon obtained from waste Elaeagnus stone, Adsorpt. Sci. Technol., 34 (2016) 512–525.
  81. L. Borah, M. Goswami, P. Phukan, Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste: adsorption equilibrium, kinetics and thermodynamics study, J. Environ. Chem. Eng., 3 (2015) 1018–1028.
  82. G. Karaçetin, S. Sivrikaya, M. Imamotlu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, J. Anal. Appl. Pyrolysis, 110 (2014) 270–276.
  83. J.J. Gao, Y.B. Qin, T. Zhou, D.D. Cao, P. Xu, D. Hochstetter, Y.F. Wang, Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies, J. Zhejiang Univ. Sci. B, 14 (2013) 650–658.
  84. V. Bello-Huitle, P. Atenco-Fernández, R. Reyes-Mazzoco, Adsorption studies of methylene blue and phenol onto pecan and castile nutshells prepared by chemical activation, Rev. Mex. Ing. Quim., 9 (2010) 313–322.
  85. H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
  86. O.S. Bello, I.A. Adeogun, J.C. Ajaelu, E.O. Fehintola, Adsorption of methylene blue onto activated carbon derived from periwinkle shells: kinetics and equilibrium studies, Chem. Ecol., 24 (2008) 285–295.
  87. B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust, Dyes Pigm., 75 (2007) 143–149.
  88. A.L. Ahmad, M.M. Loh, J.A. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption, Dyes Pigm., 75 (2007) 263–272.
  89. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt doped iron based MOF for enhanced removal and recovery of methylene blue dye from waste water, J. Mol. Liq., 314 (2020), doi: 10.1016/j.molliq.2020.113642.
  90. C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai, Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste, J. Mol. Liq., 284 (2019) 343–352.
  91. S. Lagergren, About the theory of so-called adsorption of soluble substances (Zur theorie der sogenannten adsorption geloster stoffe), Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  92. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  93. E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber, G. Morvan, Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters, Desalination, 275 (2011) 74–81.
  94. F. Krika, O. el F. Benlahbib, Removal of methyl orange from aqueous solution via adsorption on cork as a natural and lowcoast adsorbent: equilibrium, kinetic and thermodynamic study of removal process, Desal. Water Treat., 53 (2015) 3711–3723.