References

  1. R. Croce, F. Cinà, A. Lombardo, G. Crispeyn, C.I. Cappelli, M. Vian, S. Maiorana, E. Benfenati, D. Baderna, Aquatic toxicity of several textile dye formulations: acute and chronic assays with Daphnia magna and Raphidocelis subcapitata, Ecotoxicol. Environ. Saf., 144 (2017) 79–87.
  2. M. Ali, T.R. Sreekrishnan, Aquatic toxicity from pulp and paper mill effluents: a review, Adv. Environ. Res., 5 (2001) 175–196.
  3. A. Karim, B. Achiou, A. Bouazizi, A. Aaddane, M. Ouammou, M. Bouziane, J. Bennazha, S. Alami Younssi, Development of reduced graphene oxide membrane on flat Moroccan ceramic pozzolan support. Application for soluble dyes removal, J. Environ. Chem. Eng., 6 (2018) 1475–1485.
  4. N.M. Mahmoodi, M. Taghizadeh, A. Taghizadeh, Mesoporous activated carbons of low-cost agricultural
    bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems, molliq, 269 (2018) 217–228.
  5. B. Nicolaisen, Developments in membrane technology for water treatment, Desalination, 153 (2003) 355–360.
  6. A. Srivastava, V.K. Parida, A. Majumder, B. Gupta, A.K. Gupta, Treatment of saline wastewater using physicochemical, biological, and hybrid processes: insights into inhibition mechanisms, treatment efficiencies and performance enhancement, J. Environ. Chem. Eng., 9 (2021) 105775, doi: 10.1016/j.jece.2021.105775.
  7. S. Sadri Moghaddam, M.R. Alavi Moghaddam, M. Arami, Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175 (2010) 651–657.
  8. D.M. Ruthven, Fundamentals of Adsorption Equilibrium and Kinetics in Microporous Solids. Adsorption and Diffusion, Springer, Berlin, Heidelberg, 2006, pp. 1–43.
  9. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  10. A. Singh, D.P. Dutta, J. Ramkumar, K. Bhattacharya, A.K. Tyagi, M.H. Fulekar, Serendipitous discovery of super adsorbent properties of sonochemically synthesized nano BaWO4, RSC Adv., 3 (2013) 22580–22590.
  11. G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng., 8 (2020) 103988, doi: 10.1016/j.jece.2020.103988.
  12. W.H. Lee, P.J. Reucroft. Vapor adsorption on coal- and wood-based chemically activated carbons(II) adsorption of organic vapors, Carbon, 37 (1999) 15–20.
  13. R. Kant, Adsorption of dye eosin from an aqueous solution on two different samples of activated carbon by static batch method, J. Water Res. Prot., 4 (2012) 93–98.
  14. T.N.V. de Souza, S.M.L. de Carvalho, M.G.A. Vieira, M.G.C. da Silva, D. do S.B. Brasil, Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors, Appl. Surf. Sci., 448 (2018) 662–670.
  15. M. Arami, N.Y. Limaee, N.M. Mahmoodi, N.S. Tabrizi, Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies, J. Colloid Interface Sci., 288 (2005) 371–376.
  16. X. Zhou, L. Shi, T.B. Moghaddam, M. Chen, S. Wu, X. Yuan, Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar, J. Hazard. Mater., 425 (2022) 128003, doi: 10.1016/j.jhazmat.2021.128003.
  17. M. Daoud, O. Benturki, Z. Kecira, P. Girods, A. Donnot, Removal of reactive dye (BEZAKTIV Red S-MAX) from aqueous solution by adsorption onto activated carbons prepared from date palm rachis and jujube stones, J. Mol. Liq., 243 (2017) 799–809.
  18. N. El Ouahedy, M. Zbair, S. Ojala, R. Brahmi, L. Pirault-Roy, Porous carbon materials derived from olive kernels: application in adsorption of organic pollutants, Environ. Sci. Pollut. Res., 27 (2020) 29967–29982.
  19. D.P. Dutta, S. Nath, Low-cost synthesis of SiO2/C nanocomposite from corn cobs and its adsorption of uranium(VI), chromium(VI) and cationic dyes from wastewater, J. Mol. Liq., 269 (2018) 140–151.
  20. N. Fayoud, S. Tahiri, S. Alami Younssi, A. Albizane, D. Gallart- Mateu, M.L. Cervera, M. de la Guardia, Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials, Desal. Water Treat., 57 (2016) 16611–16625.
  21. Y. Dehmani, O. El Khalki, H. Mezougane, S. Abouarnadasse, Comparative study on adsorption of cationic dyes and phenol by natural clays, Chem. Data Collect., 33 (2021) 100674, doi: 10.1016/j.cdc.2021.100674.
  22. M. Ahrouch, J.M. Gatica, K. Draoui, H. Vidal, Adding value to natural clays as low-cost adsorbents of methylene blue in polluted water through honeycomb monoliths manufacture, SN Appl. Sci., 1 (2019) 1595, doi: 10.1007/s42452-019-1636-4.
  23. H. Bensalah, S.A. Younssi, M. Ouammou, A. Gurlo, M.F. Bekheet, Azo dye adsorption on an industrial waste-transformed hydroxyapatite adsorbent: kinetics, isotherms, mechanism and regeneration studies, J. Environ. Chem. Eng., 8 (2020) 103807, doi: 10.1016/j.jece.2020.103807.
  24. G. Derouich, S.A. Younssi, J. Bennazha, B. Achiou, M. Ouammou, I.E.E. El-Hassani, A. Albizane, Adsorption study of cationic and anionic dyes onto Moroccan natural pozzolan. Application for removal of textile dyes from aqueous solutions, Desal. Water Treat., 145 (2019) 348–360.
  25. M. Doğan, M. Alkan, A. Türkyilmaz, Y. Özdemir, Kinetics and mechanism of removal of methylene blue by adsorption onto perlite, J. Hazard. Mater., 109 (2004) 141–148.
  26. A.H. Jawad, A.S. Abdulhameed, Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study, Surf. Interfaces, 18 (2020) 100422, doi: 10.1016/j.surfin.2019.100422.
  27. M.C. Avila, I.D. Lick, N.A. Comelli, M.L. Ruiz, Adsorption of an anionic dye from aqueous solution on a treated clay, Groundwater Sustainable Dev., 15 (2021) 100688, doi: 10.1016/j.gsd.2021.100688.
  28. O. Amrhar, A. Berisha, L. El Gana, H. Nassali, M.S. Elyoubi, Removal of methylene blue dye by adsorption onto natural Muscovite clay: experimental, theoretical and computational investigation, J. Environ. Anal. Chem., (2021) 1–26, doi: 10.1080/03067319.2021.1897119.
  29. M.A. Salam, M.R. Abukhadra, M. Mostafa, Effective decontamination of As(V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism, Environ. Sci. Pollut. Res., 27 (2020) 13247–13260.
  30. M.A. Barakat, R. Kumar, E.C. Lima, M.K. Seliem, Facile synthesis of muscovite–supported Fe3O4 nanoparticles as an adsorbent and heterogeneous catalyst for effective removal of methyl orange: characterisation, modelling, and mechanism, J. Taiwan Inst. Chem. Eng., 119 (2021) 146–157.
  31. M.Á. López Zavala, H. Romero-Santana, B.E. Monárrez- Cordero, Removal of Cr(VI) from water by adsorption using low cost clay-perlite-iron membranes, J. Water Process Eng., 38 (2020) 101672, doi: 10.1016/j.jwpe.2020.101672.
  32. Y. Rakhila, A. Ezzahi, A. Elmchaouri, A. Mestari, Synthesis and characterization of a red clay based new composite ceramic material, Adv. Mater. Phys. Chem., 8 (2018) 295–310.
  33. Y. Rakhila, A. Elmchaouri, A. Mestari, S. Korili, M. Abouri, A. Gil, Adsorption recovery of Ag(I) and Au(III) from an electronics industry wastewater on a clay mineral composite, Int. J. Miner. Metall. Mater., 26 (2019) 673–680.
  34. R. Ozao, M. Ochiai, A. Yamazaki, R. Otsuka, Thermal analysis of ground dolomites, Thermochim. Acta, 183 (1991) 183–198.
  35. B. Achiou, H.E. Omari, J. Bennazha, A. Albizane, L. Daoudi, L. Saadi, M. Ouammou, S.A. Younssi, A.E. Maadi, M. Chehbouni, Physicochemical and mineralogical characterizations of clays from Fez region (basin of Saiss, Morocco) in the perspective of industrial use, J. Mater. Environ. Sci., 7 (2016) 1474–1484.
  36. M.M. Rahman, S.H. Rimu, S. Biswas, T.U. Rashid, A.H. Chisty, M.A. Rahman, S. Murad, P. Haque, Preparation of poly(acrylic acid) exfoliated clay composite by in-situ polymerisation for decolouration of methylene blue from wastewater, Int. J. Environ. Anal. Chem., (2020), doi: 10.1080/03067319.2020.1813732.
  37. B.K. Shahraki, B. Mehrabi, K. Gholizadeh, M. Mohammadinasab, Thermal behavior of calcite as an expansive agent, J. Min. Metall. Sect. B., 47 (2011) 89–97.
  38. J. Bertaux, F. Froehlich, P. Ildefonse, Multicomponent analysis of FTIR spectra; quantification of amorphous and crystallized mineral phases in synthetic and natural sediments, J. Sediment. Res., 68 (1998) 440–447.
  39. H. Ouaddari, A. Karim, B. Achiou, S. Saja, A. Aaddane, J. Bennazha, I.E.A. El Hassani, M. Ouammou, A. Albizane, New low-cost ultrafiltration membrane made from purified natural clays for direct Red 80 dye removal, J. Environ. Chem. Eng., 7 (2019) 103268, doi: 10.1016/j.jece.2019.103268.
  40. H. Elomari, B. Achiou, M. Ouammou, A. Albizane, J. Bennazha, S. Alami Younssi, I. Elamrani, Elaboration and characterization of flat membrane supports from Moroccan clays. Application for the treatment of wastewater, Desal. Water Treat., 57 (2016) 20298–20306.
  41. B. Achiou, H. Elomari, A. Bouazizi, A. Karim, M. Ouammou, A. Albizane, J. Bennazha, S.A. Younssi, I.E. El Amrani, Manufacturing of tubular ceramic microfiltration membrane based on natural pozzolan for pretreatment of seawater desalination, Desalination, 419 (2017) 181–187.
  42. Y. Dehmani, L. Sellaoui, Y. Alghamdi, J. Lainé, M. Badawi, A. Amhoud, A. Bonilla-Petriciolet, T. Lamhasni, S. Abouarnadasse, Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay, J. Mol. Liq., 312 (2020) 113383, doi: 10.1016/j.molliq.2020.113383.
  43. R.A. Shawabkeh, M.F. Tutunji, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24 (2003) 111–120.
  44. Ravi, L.M. Pandey, Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue, Appl. Clay Sci., 169 (2019) 102–111.
  45. M. Markiewicz, W. Mrozik, K. Rezwan, J. Thöming, J. Hupka, C. Jungnickel, Changes in zeta potential of imidazolium ionic liquids modified minerals – implications for determining mechanism of adsorption, Chemosphere, 90 (2013) 706–712.
  46. D.W. Fuerstenau, Pradip, Zeta potentials in the flotation of oxide and silicate minerals, Adv. Colloid Interface Sci., 114–115 (2005) 9–26.
  47. E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of basic dyes from aqueous solution onto activated carbons, J. Chem. Eng., 135 (2008) 174–184.
  48. S. Tang, Z. Wang, D. Yuan, C. Zhang, Y. Rao, Z. Wang, K. Yin, Ferrous ion-tartaric acid chelation promoted calcium peroxide Fenton-like reactions for simulated organic wastewater treatment, J. Cleaner Prod., 268 (2020) 122253, doi: 10.1016/j. jclepro.2020.122253.
  49. A.R. Tehrani-Bagha, H. Nikkar, N.M. Mahmoodi, M. Markazi, F.M. Menger, The sorption of cationic dyes onto kaolin: kinetic, isotherm and thermodynamic studies, Desalination, 266 (2011) 274–280.
  50. M.E. González-López, C.M. Laureano-Anzaldo, A.A. Pérez- Fonseca, M. Arellano, J.R. Robledo-Ortíz, A critical overview of adsorption models linearization: methodological and statistical inconsistencies, Sep. Purif. Rev., 51 (2022) 358–372.
  51. T. Shen, L. Wang, Q. Zhao, S. Guo, M. Gao, Single and simultaneous adsorption of basic dyes by novel organovermiculite: a combined experimental and theoretical study, Colloids Surf., A, 601 (2020) 125059, doi: 10.1016/j.colsurfa.2020.125059.