References
- I. Levitsky, D. Tavor, V. Gitis, Micro and nanobubbles in water
and wastewater treatment: a state-of-the-art review, J. Water
Process Eng., 47 (2022) 102688, doi: 10.1016/j.jwpe.2022.102688.
- M.T. Au, J. Pasupuleti, K.H. Chua, Strategies to
improve energy efficiency in sewage treatment plants,
IOP Conf. Ser.: Earth Environ. Sci., 16 (2013) 012033,
doi: 10.1088/1755-1315/16/1/012033.
- G. Boczkaj, A. Fernandes, Wastewater treatment by means of
advanced oxidation processes at basic pH conditions: a review,
Chem. Eng. J., 320 (2017) 608–633.
- J. Wu, K. Zhang, C. Cen, X. Wu, R. Mao, Y. Zheng, Role
of bulk nanobubbles in removing organic pollutants in
wastewater treatment, AMB Express, 11 (2021) 96, doi: 10.1186/s13568-021-01254-0.
- M. Sakr, M.M. Mohamed, M.A. Maraqa, M.A. Hamouda,
A.A. Hassan, J. Ali, J. Jung, A critical review of the recent developments
in micro–nano bubbles applications for domestic
and industrial wastewater treatment, Alexandria Eng. J.,
61 (2022) 6591–6612.
- A.J. Atkinson, O.G. Apul, O. Schneider, S. Garcia-Segura,
P. Westerhoff, Nanobubble technologies offer opportunities to
improve water treatment, Acc. Chem. Res., 52 (2019) 1196–1205.
- M. Takahashi, Base and technological application of microbubble
and nanobubble, Mater. Integr., 22 (2009) 2–19.
- A. Azevedo, H. Oliveira, J. Rubio, Bulk nanobubbles in the
mineral and environmental areas: updating research and
applications, Adv. Colloid Interface Sci., 271 (2019) 101992,
doi: 10.1016/j.cis.2019.101992.
- L. Zhang, P. Liu, J. Ma, J. Zhang, M. Zhang, G. Wu, Wastewater
treatment using a microbubble aerated biofilm reactor,
Huan Jing Ke Xue, 34 (2013) 2277–2282.
- N. Nirmalkar, A.W. Pacek, M. Barigou, On the existence and
stability of bulk nanobubbles, Langmuir, 34 (2018) 10964–10973.
- J. Yang, J. Duan, D. Fornasiero, J. Ralston, Very small bubble
formation at the solid–water interface, J. Phys. Chem. B,
107 (2003) 6139–6147.
- M. Alheshibri, J. Qian, M. Jehannin, V.S.J. Craig, A history of
nanobubbles, Langmuir, 32 (2016) 11086–11100.
- C. Liu, Y. Tang, Application research of micro and nano bubbles
in water pollution control, E3S Web Conf., 136 (2019) 06028,
doi: 10.1051/e3sconf/20191360.
- W. Fan, Z. Zhou, W. Wang, M. Huo, L. Zhang, S. Zhu, W. Yang,
X. Wang, Environmentally friendly approach for advanced
treatment of municipal secondary effluent by integration
of micro-nanobubbles and photocatalysis, J. Cleaner Prod.,
237 (2019) 117828, doi: 10.1016/j.jclepro.2019.117828.
- P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface
Chemistry, Marcel Dekker, New York, NY, 1997.
- P. Ghosh, Coalescence of bubbles in liquid, Bubble Sci. Eng.
Technol., 1 (2009) 75–87.
- A. Srinivas, P. Ghosh, Coalescence of bubbles in aqueous alcohol
solutions, Ind. Eng. Chem. Res., 51 (2012) 795–806.
- N. Masuda, A. Maruyama, T. Eguchi, T. Hirakawa, Y. Murakami,
Influence of microbubbles on free radical generation by
ultrasound in aqueous solution: dependence of ultrasound
frequency, J. Phys. Chem. B, 119 (2015) 12887–12893.
- M. Takahashi, K. Chiba, P. Li, Free-radical generation from
collapsing microbubbles in the absence of a dynamic stimulus,
J. Phys. Chem. B, 111 (2007) 1343–1347.
- M. Takahashi, K. Chiba, P. Li, Formation of hydroxyl radicals
by collapsing ozone microbubbles under strongly acidic
conditions, J. Phys. Chem. B, 111 (2007) 11443–11446.
- Y. Bando, Y. Takahashi, W. Luo, Y. Wang, K. Yasuda,
M. Nakamura, Y. Funato, M. Oshima, Flow characteristics
in concurrent upflow bubble column dispersed with microbubbles,
J. Chem. Eng. Jpn., 41 (2008) 562–567.
- P. Li, M. Takahashi, K. Chiba, Enhanced free-radical
generation by shrinking microbubbles using a copper catalyst,
Chemosphere, 77 (2009) 1157–1160.
- P. Li, M. Takahashi, K. Chiba, Degradation of phenol by the
collapse of microbubbles, Chemosphere, 75 (2009) 1371–1375.
- A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of
microbubble and nanobubble technology for water treatment,
Chemosphere, 84 (2011) 1175–1180.
- T.T. Bui, M. Han, Decolorization of dark green Rit dye using
positively charged nanobubbles technologies, Sep. Purif.
Technol., 233 (2020) 116034, doi: 10.1016/j.seppur.2019.116034.
- G.Z. Kyzas, G. Bomis, R.I. Kosheleva, E.K. Efthimiadou,
E.P. Favvas, M. Kostoglou, A.C. Mitropoulos, Nanobubbles
effect on heavy metal ions adsorption by activated carbon,
Chem. Eng. J., 356 (2019) 91–97.
- M. Leyva, J. Valverde Flores, Reduction of COD and TSS of
waste effluents from a sugar industry through the use of air
micro-nanobubbles, J. Nanotechnol., 2 (2018) 7–12.
- M.M.A. Mohamed, N.E. Saleh, M.M. Sherif, Modeling in-situ
benzene bioremediation in the contaminated Liwa aquifer
(UAE) using the slow-release oxygen source technique,
Environ. Earth Sci., 61 (2010) 1385–1399.
- H. Tsuge, Fundamentals of microbubbles and nanobubbles,
Bull. Soc. Sea Water Sci. Jpn., 64 (2010) 4–10 (in Japanese).
- A. Guerrini, G. Romano, A. Indipendenza, Energy efficiency
drivers in wastewater treatment plants: a double bootstrap
DEA analysis, Sustainability, 9 (2017) 1126, doi: 10.3390/su9071126.
- M. Gandiglio, A. Lanzini, A. Soto, P. Leone, M. Santarelli, Enhancing
the energy efficiency of wastewater treatment plants
through co-digestion and fuel cell systems, Front. Environ.
Sci., 5 (2017), doi: 10.3389/fenvs.2017.00070.
- L.D. Benefield, C.W. Randall, Biological Process Design for
Wastewater Treatment, Prentice-Hall, Englewood Cliffs, NJ,
1980.
- V.F. Velho, G.C. Daudt, C.L. Martins, P. Belli Filho,
R.H.R. Costa, Reduction of excess sludge production in
an activated sludge system based on lysis-cryptic growth,
uncoupling
metabolism and folic acid addition, Braz. J. Chem.
Eng., 33 (2015) 47–57.
- G.U. Semblante, H.V. Phan, F.I. Hai, Z.-Q. Xu, W.E. Price,
L.D. Nghiem, The role of microbial diversity and composition
in minimizing sludge production in the oxic-settling-anoxic
process, Sci. Total Environ., 607–608 (2017) 558–567.
- W. Xiao, G. Xu, Mass transfer of nanobubble aeration and its
effect on biofilm growth: microbial activity and structural
properties, Sci. Total Environ., 703 (2020) 134976, doi: 10.1016/j.scitotenv.2019.134976.
- K. Yao, Y. Chi, F. Wang, J. Yan, M. Ni, K. Cen, The effect of
microbubbles on gas-liquid mass transfer coefficient and
degradation rate of COD in wastewater treatment, Water Sci.
Technol., 73 (2016) 1969–1977.
- L.V. Zhou, C. Shan-Chang, C. Ting, W. Jian, Applied research
of micro-nanobubble aeration technology on treatment of
domestic sewage, Guangzhou, Chem. Ind., 7 (2014).
- J. Jafari, A. Mesdaghinia, R. Nabizadeh, M. Farrokhi,
A.H. Mahvi, Investigation of anaerobic fluidized bed reactor/
aerobic moving bed bio reactor (AFBR/MMBR) system for
treatment of currant wastewater, Iran. J. Public Health,
42 (2013) 860–867.
- G. Urbini, R. Gavasci, P. Viotti, Oxygen control and improved
denitrification efficiency by means of a post-anoxic reactor,
Sustainability, 7 (2015) 1201–1212.
- H.N.P. Dayarathne, S. Jeong, A. Jang, Chemical-free scale
inhibition method for seawater reverse osmosis membrane
process: air micro-nanobubbles, Desalination, 461 (2019) 1–9.
- R. Hao, Y. Fan, T.J. Anderson, B. Zhang, Imaging single
nanobubbles of H2 and O2 during the overall water electrolysis
with single-molecule fluorescence microscopy, Anal. Chem.,
92 (2020) 3682–3688.
- K. Ulatowski, P. Sobieszuk, A. Mróz, T. Ciach, Stability of
nanobubbles generated in water using porous membrane
system, Chem. Eng. Process. Process Intensif., 136 (2019) 62–71.
- H. Oliveira, A. Azevedo, J. Rubio, Nanobubbles generation in a
high-rate hydrodynamic cavitation tube, Miner. Eng., 116 (2018)
32–34.
- H. Li, L. Hu, D. Song, A. Al-Tabbaa, Subsurface transport
behavior of micro-nanobubbles and potential applications for
groundwater remediation, Int. J. Environ. Res. Public Health,
11 (2013) 473–486.
- A. Tekile, I. Kim, J.-Y. Lee, Extent and persistence of dissolved
oxygen enhancement using nanobubbles, Environ. Eng. Res.,
21 (2016) 427–435.
- M. Ahmadi, G. Nabi Bidhendi, A. Torabian, N. Mehrdadi,
Effects of nanobubble aeration in oxygen transfer efficiency
and sludge production in wastewater biological treatment,
J. Adv. Environ. Health Res., 6 (2018) 225–233.
- G.R. Caicedo, J.J. Prieto Marqués, M.G. Ruı́z, J.G. Soler, A study
on the behaviour of bubbles of a 2D gas–solid fluidized bed
using digital image analysis, Chem. Eng. Process. Process
Intensif., 42 (2003) 9–14.
- R.T. Rodrigues, J. Rubio, New basis for measuring the size
distribution of bubbles, Miner. Eng., 16 (2003) 757–765.
- S. Khuntia, S.K. Majumder, P. Ghosh, Microbubble-aided water
and wastewater purification: a review, J. Rev. Chem. Eng.,
(2012), doi: 10.1515/revce-2012-0007.
- M. Takahashi, ζ potential of microbubbles in aqueous solutions:
electrical properties of the gas−water interface, J. Phys. Chem. B,
109 (2005) 21858–21864.
- X. Qu, L. Wang, S.I. Karakashev, A.V. Nguyen, Anomalous
thickness variation of the foam films stabilized by weak nonionic
surfactants, J. Colloid Interface Sci., 337 (2009) 538–547.
- A. Khaled Abdella Ahmed, C. Sun, L. Hua, Z. Zhang, Y. Zhang,
T. Marhaba, W. Zhang, Colloidal properties of air, oxygen, and
nitrogen nanobubbles in water: effects of ionic strength, natural
organic matters, and surfactants, Environ. Eng. Sci., 35 (2017),
doi: 10.1089/ees.2017.0377.
- W. Xiao, G. Xu, G. Li, Effect of nanobubble application on
performance and structural characteristics of microbial
aggregates, Sci. Total Environ., 765 (2021) 142725, doi: 10.1016/j.scitotenv.2020.142725.
- D. Mara, N. Horan, Handbook of Water and Wastewater
Microbiology Book, Elsevier, An Imprinted of Elsevier,
84 Theobald’s Road, London, WC1x 8RR, UK, 2003.
- H. Li, L. Hu, D. Song, F. Lin, Characteristics of micronanobubbles
and potential application in groundwater
bioremediation, Water Environ. Res., 86 (2014) 844–851.
- W. Xiao, S. Ke, N. Quan, L. Zhou, J. Wang, L. Zhang,
Y. Dong, W. Qin, G. Qiu, J. Hu, The role of nanobubbles in the
precipitation and recovery of organic-phosphine-containing
beneficiation wastewater, Langmuir, 34 (2018) 6217–6224.
- S.H. Ma, X.H. He, The brief introduction of discharge standard
of urban wastewater treatment plant (GB 18918-2002),
Water Wastewater Eng., 29 (2003) 89–94 (In Chinese).
- J. Drewnowski, A. Remiszewska-Skwarek, S. Duda, G. Łagód,
Aeration process in bioreactors as the main energy consumer
in a wastewater treatment plant. Review of solutions and
methods of process optimization, Processes, 7 (2019) 311,
doi: 10.3390/pr7050311.
- J.Y.C. Huang, M.-D. Cheng, J.T. Mueller, Oxygen uptake rates
for determining microbial activity and application, Water Res.,
19 (1985) 373–381.
- M. Brandt, R. Middleton, G. Wheale, F. Schulting, Energy
efficiency in the water industry, a global research project, Water
Pract. Technol., 6 (2011) wpt2011028, doi: 10.2166/wpt.2011.028.
- D. Rosso, M.K. Stenstrom, L.E. Larson, Aeration of large-scale
municipal wastewater treatment plants: state of the art, Water
Sci. Technol., 57 (2008) 973–978.
- T. Huggins, P.H. Fallgren, S. Jin, Z.J. Ren, Energy and performance
comparison of microbial fuel cell and conventional
aeration treating of wastewater, J. Microb. Biochem. Technol.,
S6 (2013) 1–5.
- K. Hashimoto, N. Kubota, T. Okuda, S. Nakai, W. Nishijima,
H. Motoshige, Reduction of ozone dosage by using ozone in
ultrafine bubbles to reduce sludge volume, Chemosphere,
274 (2021) 129922, doi: 10.1016/j.chemosphere.2021.129922.
- S. Rahimi, O. Modin, I. Mijakovic, Technologies for biological
removal and recovery of nitrogen from wastewater, Biotechnol.
Adv., 43 (2020) 107570, doi: 10.1016/j.biotechadv.2020.107570.
- M. Jafari, P. Desmond, M.C.M. van Loosdrecht, N. Derlon,
E. Morgenroth, C. Picioreanu, Effect of biofilm structural
deformation on hydraulic resistance during ultrafiltration:
a numerical and experimental study, Water Res., 145 (2018)
375–387.
- Y.-L. Jin, W.-N. Lee, C.-H. Lee, I.-S. Chang, X. Huang, T. Swaminathan,
Effect of DO concentration on biofilm structure and
membrane filterability in submerged membrane bioreactor,
Water Res., 40 (2006) 2829–2836.
- B. Mahendran, L. Lishman, S.N. Liss, Structural, physicochemical
and microbial properties of flocs and biofilms
in integrated fixed-film activated sludge (IFFAS) systems,
Water Res., 46 (2012) 5085–5101.