References

  1. I. Levitsky, D. Tavor, V. Gitis, Micro and nanobubbles in water and wastewater treatment: a state-of-the-art review, J. Water Process Eng., 47 (2022) 102688, doi: 10.1016/j.jwpe.2022.102688.
  2. M.T. Au, J. Pasupuleti, K.H. Chua, Strategies to improve energy efficiency in sewage treatment plants, IOP Conf. Ser.: Earth Environ. Sci., 16 (2013) 012033, doi: 10.1088/1755-1315/16/1/012033.
  3. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J., 320 (2017) 608–633.
  4. J. Wu, K. Zhang, C. Cen, X. Wu, R. Mao, Y. Zheng, Role of bulk nanobubbles in removing organic pollutants in wastewater treatment, AMB Express, 11 (2021) 96, doi: 10.1186/s13568-021-01254-0.
  5. M. Sakr, M.M. Mohamed, M.A. Maraqa, M.A. Hamouda, A.A. Hassan, J. Ali, J. Jung, A critical review of the recent developments in micro–nano bubbles applications for domestic and industrial wastewater treatment, Alexandria Eng. J., 61 (2022) 6591–6612.
  6. A.J. Atkinson, O.G. Apul, O. Schneider, S. Garcia-Segura, P. Westerhoff, Nanobubble technologies offer opportunities to improve water treatment, Acc. Chem. Res., 52 (2019) 1196–1205.
  7. M. Takahashi, Base and technological application of microbubble and nanobubble, Mater. Integr., 22 (2009) 2–19.
  8. A. Azevedo, H. Oliveira, J. Rubio, Bulk nanobubbles in the mineral and environmental areas: updating research and applications, Adv. Colloid Interface Sci., 271 (2019) 101992, doi: 10.1016/j.cis.2019.101992.
  9. L. Zhang, P. Liu, J. Ma, J. Zhang, M. Zhang, G. Wu, Wastewater treatment using a microbubble aerated biofilm reactor, Huan Jing Ke Xue, 34 (2013) 2277–2282.
  10. N. Nirmalkar, A.W. Pacek, M. Barigou, On the existence and stability of bulk nanobubbles, Langmuir, 34 (2018) 10964–10973.
  11. J. Yang, J. Duan, D. Fornasiero, J. Ralston, Very small bubble formation at the solid–water interface, J. Phys. Chem. B, 107 (2003) 6139–6147.
  12. M. Alheshibri, J. Qian, M. Jehannin, V.S.J. Craig, A history of nanobubbles, Langmuir, 32 (2016) 11086–11100.
  13. C. Liu, Y. Tang, Application research of micro and nano bubbles in water pollution control, E3S Web Conf., 136 (2019) 06028, doi: 10.1051/e3sconf/20191360.
  14. W. Fan, Z. Zhou, W. Wang, M. Huo, L. Zhang, S. Zhu, W. Yang, X. Wang, Environmentally friendly approach for advanced treatment of municipal secondary effluent by integration of micro-nanobubbles and photocatalysis, J. Cleaner Prod., 237 (2019) 117828, doi: 10.1016/j.jclepro.2019.117828.
  15. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, NY, 1997.
  16. P. Ghosh, Coalescence of bubbles in liquid, Bubble Sci. Eng. Technol., 1 (2009) 75–87.
  17. A. Srinivas, P. Ghosh, Coalescence of bubbles in aqueous alcohol solutions, Ind. Eng. Chem. Res., 51 (2012) 795–806.
  18. N. Masuda, A. Maruyama, T. Eguchi, T. Hirakawa, Y. Murakami, Influence of microbubbles on free radical generation by ultrasound in aqueous solution: dependence of ultrasound frequency, J. Phys. Chem. B, 119 (2015) 12887–12893.
  19. M. Takahashi, K. Chiba, P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, J. Phys. Chem. B, 111 (2007) 1343–1347.
  20. M. Takahashi, K. Chiba, P. Li, Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions, J. Phys. Chem. B, 111 (2007) 11443–11446.
  21. Y. Bando, Y. Takahashi, W. Luo, Y. Wang, K. Yasuda, M. Nakamura, Y. Funato, M. Oshima, Flow characteristics in concurrent upflow bubble column dispersed with microbubbles, J. Chem. Eng. Jpn., 41 (2008) 562–567.
  22. P. Li, M. Takahashi, K. Chiba, Enhanced free-radical generation by shrinking microbubbles using a copper catalyst, Chemosphere, 77 (2009) 1157–1160.
  23. P. Li, M. Takahashi, K. Chiba, Degradation of phenol by the collapse of microbubbles, Chemosphere, 75 (2009) 1371–1375.
  24. A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84 (2011) 1175–1180.
  25. T.T. Bui, M. Han, Decolorization of dark green Rit dye using positively charged nanobubbles technologies, Sep. Purif. Technol., 233 (2020) 116034, doi: 10.1016/j.seppur.2019.116034.
  26. G.Z. Kyzas, G. Bomis, R.I. Kosheleva, E.K. Efthimiadou, E.P. Favvas, M. Kostoglou, A.C. Mitropoulos, Nanobubbles effect on heavy metal ions adsorption by activated carbon, Chem. Eng. J., 356 (2019) 91–97.
  27. M. Leyva, J. Valverde Flores, Reduction of COD and TSS of waste effluents from a sugar industry through the use of air micro-nanobubbles, J. Nanotechnol., 2 (2018) 7–12.
  28. M.M.A. Mohamed, N.E. Saleh, M.M. Sherif, Modeling in-situ benzene bioremediation in the contaminated Liwa aquifer (UAE) using the slow-release oxygen source technique, Environ. Earth Sci., 61 (2010) 1385–1399.
  29. H. Tsuge, Fundamentals of microbubbles and nanobubbles, Bull. Soc. Sea Water Sci. Jpn., 64 (2010) 4–10 (in Japanese).
  30. A. Guerrini, G. Romano, A. Indipendenza, Energy efficiency drivers in wastewater treatment plants: a double bootstrap DEA analysis, Sustainability, 9 (2017) 1126, doi: 10.3390/su9071126.
  31. M. Gandiglio, A. Lanzini, A. Soto, P. Leone, M. Santarelli, Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems, Front. Environ. Sci., 5 (2017), doi: 10.3389/fenvs.2017.00070.
  32. L.D. Benefield, C.W. Randall, Biological Process Design for Wastewater Treatment, Prentice-Hall, Englewood Cliffs, NJ, 1980.
  33. V.F. Velho, G.C. Daudt, C.L. Martins, P. Belli Filho, R.H.R. Costa, Reduction of excess sludge production in an activated sludge system based on lysis-cryptic growth, uncoupling metabolism and folic acid addition, Braz. J. Chem. Eng., 33 (2015) 47–57.
  34. G.U. Semblante, H.V. Phan, F.I. Hai, Z.-Q. Xu, W.E. Price, L.D. Nghiem, The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process, Sci. Total Environ., 607–608 (2017) 558–567.
  35. W. Xiao, G. Xu, Mass transfer of nanobubble aeration and its effect on biofilm growth: microbial activity and structural properties, Sci. Total Environ., 703 (2020) 134976, doi: 10.1016/j.scitotenv.2019.134976.
  36. K. Yao, Y. Chi, F. Wang, J. Yan, M. Ni, K. Cen, The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment, Water Sci. Technol., 73 (2016) 1969–1977.
  37. L.V. Zhou, C. Shan-Chang, C. Ting, W. Jian, Applied research of micro-nanobubble aeration technology on treatment of domestic sewage, Guangzhou, Chem. Ind., 7 (2014).
  38. J. Jafari, A. Mesdaghinia, R. Nabizadeh, M. Farrokhi, A.H. Mahvi, Investigation of anaerobic fluidized bed reactor/ aerobic moving bed bio reactor (AFBR/MMBR) system for treatment of currant wastewater, Iran. J. Public Health, 42 (2013) 860–867.
  39. G. Urbini, R. Gavasci, P. Viotti, Oxygen control and improved denitrification efficiency by means of a post-anoxic reactor, Sustainability, 7 (2015) 1201–1212.
  40. H.N.P. Dayarathne, S. Jeong, A. Jang, Chemical-free scale inhibition method for seawater reverse osmosis membrane process: air micro-nanobubbles, Desalination, 461 (2019) 1–9.
  41. R. Hao, Y. Fan, T.J. Anderson, B. Zhang, Imaging single nanobubbles of H2 and O2 during the overall water electrolysis with single-molecule fluorescence microscopy, Anal. Chem., 92 (2020) 3682–3688.
  42. K. Ulatowski, P. Sobieszuk, A. Mróz, T. Ciach, Stability of nanobubbles generated in water using porous membrane system, Chem. Eng. Process. Process Intensif., 136 (2019) 62–71.
  43. H. Oliveira, A. Azevedo, J. Rubio, Nanobubbles generation in a high-rate hydrodynamic cavitation tube, Miner. Eng., 116 (2018) 32–34.
  44. H. Li, L. Hu, D. Song, A. Al-Tabbaa, Subsurface transport behavior of micro-nanobubbles and potential applications for groundwater remediation, Int. J. Environ. Res. Public Health, 11 (2013) 473–486.
  45. A. Tekile, I. Kim, J.-Y. Lee, Extent and persistence of dissolved oxygen enhancement using nanobubbles, Environ. Eng. Res., 21 (2016) 427–435.
  46. M. Ahmadi, G. Nabi Bidhendi, A. Torabian, N. Mehrdadi, Effects of nanobubble aeration in oxygen transfer efficiency and sludge production in wastewater biological treatment, J. Adv. Environ. Health Res., 6 (2018) 225–233.
  47. G.R. Caicedo, J.J. Prieto Marqués, M.G. Ruı́z, J.G. Soler, A study on the behaviour of bubbles of a 2D gas–solid fluidized bed using digital image analysis, Chem. Eng. Process. Process Intensif., 42 (2003) 9–14.
  48. R.T. Rodrigues, J. Rubio, New basis for measuring the size distribution of bubbles, Miner. Eng., 16 (2003) 757–765.
  49. S. Khuntia, S.K. Majumder, P. Ghosh, Microbubble-aided water and wastewater purification: a review, J. Rev. Chem. Eng., (2012), doi: 10.1515/revce-2012-0007.
  50. M. Takahashi, ζ potential of microbubbles in aqueous solutions: electrical properties of the gas−water interface, J. Phys. Chem. B, 109 (2005) 21858–21864.
  51. X. Qu, L. Wang, S.I. Karakashev, A.V. Nguyen, Anomalous thickness variation of the foam films stabilized by weak nonionic surfactants, J. Colloid Interface Sci., 337 (2009) 538–547.
  52. A. Khaled Abdella Ahmed, C. Sun, L. Hua, Z. Zhang, Y. Zhang, T. Marhaba, W. Zhang, Colloidal properties of air, oxygen, and nitrogen nanobubbles in water: effects of ionic strength, natural organic matters, and surfactants, Environ. Eng. Sci., 35 (2017), doi: 10.1089/ees.2017.0377.
  53. W. Xiao, G. Xu, G. Li, Effect of nanobubble application on performance and structural characteristics of microbial aggregates, Sci. Total Environ., 765 (2021) 142725, doi: 10.1016/j.scitotenv.2020.142725.
  54. D. Mara, N. Horan, Handbook of Water and Wastewater Microbiology Book, Elsevier, An Imprinted of Elsevier, 84 Theobald’s Road, London, WC1x 8RR, UK, 2003.
  55. H. Li, L. Hu, D. Song, F. Lin, Characteristics of micronanobubbles and potential application in groundwater bioremediation, Water Environ. Res., 86 (2014) 844–851.
  56. W. Xiao, S. Ke, N. Quan, L. Zhou, J. Wang, L. Zhang, Y. Dong, W. Qin, G. Qiu, J. Hu, The role of nanobubbles in the precipitation and recovery of organic-phosphine-containing beneficiation wastewater, Langmuir, 34 (2018) 6217–6224.
  57. S.H. Ma, X.H. He, The brief introduction of discharge standard of urban wastewater treatment plant (GB 18918-2002), Water Wastewater Eng., 29 (2003) 89–94 (In Chinese).
  58. J. Drewnowski, A. Remiszewska-Skwarek, S. Duda, G. Łagód, Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization, Processes, 7 (2019) 311, doi: 10.3390/pr7050311.
  59. J.Y.C. Huang, M.-D. Cheng, J.T. Mueller, Oxygen uptake rates for determining microbial activity and application, Water Res., 19 (1985) 373–381.
  60. M. Brandt, R. Middleton, G. Wheale, F. Schulting, Energy efficiency in the water industry, a global research project, Water Pract. Technol., 6 (2011) wpt2011028, doi: 10.2166/wpt.2011.028.
  61. D. Rosso, M.K. Stenstrom, L.E. Larson, Aeration of large-scale municipal wastewater treatment plants: state of the art, Water Sci. Technol., 57 (2008) 973–978.
  62. T. Huggins, P.H. Fallgren, S. Jin, Z.J. Ren, Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater, J. Microb. Biochem. Technol., S6 (2013) 1–5.
  63. K. Hashimoto, N. Kubota, T. Okuda, S. Nakai, W. Nishijima, H. Motoshige, Reduction of ozone dosage by using ozone in ultrafine bubbles to reduce sludge volume, Chemosphere, 274 (2021) 129922, doi: 10.1016/j.chemosphere.2021.129922.
  64. S. Rahimi, O. Modin, I. Mijakovic, Technologies for biological removal and recovery of nitrogen from wastewater, Biotechnol. Adv., 43 (2020) 107570, doi: 10.1016/j.biotechadv.2020.107570.
  65. M. Jafari, P. Desmond, M.C.M. van Loosdrecht, N. Derlon, E. Morgenroth, C. Picioreanu, Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: a numerical and experimental study, Water Res., 145 (2018) 375–387.
  66. Y.-L. Jin, W.-N. Lee, C.-H. Lee, I.-S. Chang, X. Huang, T. Swaminathan, Effect of DO concentration on biofilm structure and membrane filterability in submerged membrane bioreactor, Water Res., 40 (2006) 2829–2836.
  67. B. Mahendran, L. Lishman, S.N. Liss, Structural, physicochemical and microbial properties of flocs and biofilms in integrated fixed-film activated sludge (IFFAS) systems, Water Res., 46 (2012) 5085–5101.