References

  1. S. Gul, S.B. Khan, I. Ur Rehman, M.A. Khan, M.I. Khan, A comprehensive review of magnetic nanomaterials modern day theranostics, Front. Mater., 6 (2019) 179, doi: 10.3389/fmats.2019.00179.
  2. T. Rambaran, R. Schirhagl, Nanotechnology from lab to industry – a look at current trends, Nanoscale Adv., 4 (2022) 3664–3675.
  3. Y. Lee, D. Kim, J. Seo, H. Han, S.B. Khan, Preparation and characterization of poly(propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties, Polym. Int., 62 (2013) 1386–1394.
  4. M. Mukhtar, M.I. Din, A. Aihetasham, Z. Hussain, R. Khalid, R. Rehan, Bio-reduction potentials of Gentiana kurroo Royle for single-step bio-genic production of silver nanoparticles, Desal. Water Treat., 183 (2020) 248–252.
  5. S. Kanithan, N.A. Vignesh, K.M. Katubi, P.S. Subudhi, E. Yanmaz, J.A. Dhanraj, N.S. Alsaiari, M. Sukumar, M. Sundararajan, S. Baskar, Enhanced optical, magnetic, and photocatalytic activity of Mg2+ substituted
    NiFe2O4 spinel nanoparticles, J. Mol. Struct., 1265 (2022) 133289, doi: 10.1016/j.molstruc.2022.133289.
  6. M. Ismail, M.I. Khan, K. Akhtar, M.K. Ali, A.M. Asiri, S. Bahadar Khan, Biosynthesis of silver nanoparticles:
    A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution, Physica E, 103 (2018) 367–376.
  7. P. Kumar, V. Tomar, D. Kumar, R.K. Joshi, M. Nemiwal, Magnetically active iron oxide nanoparticles for catalysis of organic transformations: a review, Tetrahedron, 106–107 (2022) 132641, doi: 10.1016/j.tet.2022.132641.
  8. V. Basudkar, S.A. Gharat, M.M. Momin, M. Shringarpure, A review of anti-aging nanoformulations: recent developments in excipients for nanocosmeceuticals and regulatory guidelines, Crit. Rev. Ther. Drug Carrier Syst., 39 (2022) 45–97.
  9. H. Guo, Y. Su, C. Guo, Q. Chen, Z. Liu, H. Geng, K. Mu, J. Wang, D. Chen, Polysaccharide based drug delivery systems for Chinese medicines, Biocatal. Agric. Biotechnol., 44 (2022) 102441, doi: 10.1016/j.bcab.2022.102441.
  10. T. Kamal, I. Ahmad, S.B. Khan, A.M. Asiri, Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles, Int. J. Biol. Macromol., 135 (2019) 1162–1170.
  11. M.I. Din, A. Yamin, Z. Hussain, R. Khalid, M. Arshad, Investigation of biologically synthesized stable copper oxide nanoparticles using Allium sativum extract by photocatalysis of methylene blue, Inorg. Nano-Metal Chem., (2022) 1–8, doi: 10.1080/24701556.2021.2025082.
  12. S. Gul, Z.A. Rehan, S.A. Khan, K. Akhtar, M.A. Khan, M.I. Khan, M.I. Rashid, A.M. Asiri, S.B. Khan, Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol, J. Mol. Liq., 230 (2017) 616–624.
  13. M.S. Aguilar, R. Esparza, G. Rosas, Synthesis of Cu nanoparticles by chemical reduction method, Trans. Nonferrous Met. Soc. China, 29 (2019) 1510–1515.
  14. I.A. Tito, M.S. Uddin, M.S. Islam, Copper nanoparticle (CuNP’s) synthesis: a review of the various ways with photocatalytic and antibacterial activity, Orient. J. Chem., An Int. Res. J. Pure Appl. Chem., 37 (2021) 1030–1040.
  15. S. Noor, Z. Shah, A. Javed, A. Ali, S.B. Hussain, S. Zafar, H. Ali, S.A. Muhammad, A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities, J. Microbiol. Methods, 174 (2020) 105966, doi: 10.1016/j.mimet.2020.105966.
  16. M.I. Din, J. Najeeb, Z. Hussain, R. Khalid, G. Ahmad, Biogenic scale up synthesis of ZnO nano-flowers with superior nanophotocatalytic performance, Inorg. Nano-Metal Chem., 50 (2020) 613–619.
  17. O.V. Kharissova, H.V. Rasika Dias, B.I. Kharisov, B.O. Pérez, V.M. Jiménez Pérez, The greener synthesis of nanoparticles, Trends Biotechnol., 31 (2013) 240–248.
  18. M.I. Din, M. Tariq, Z. Hussain, R. Khalid, Single step green synthesis of nickel and nickel oxide nanoparticles from Hordeum vulgare for photocatalytic degradation of methylene blue dye, Inorg. Nano-Metal Chem., 50 (2020) 292–297.
  19. A. Rana, K. Yadav, S. Jagadevan, A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity, J. Cleaner Prod., 272 (2020) 122880, doi: 10.1016/j.jclepro.2020.122880.
  20. S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chem., 13 (2011) 2638–2650.
  21. T. Cherian, K. Ali, Q. Saquib, M. Faisal, R. Wahab, J. Musarrat, Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: novel prospects as antibacterial and antibiofilm agents, Biomolecules, 10 (2020) 169, doi: 10.3390/biom10020169.
  22. M. Nasrollahzadeh, S. Mohammad Sajadi, Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature, J. Colloid Interface Sci., 457 (2015) 141–147.
  23. S. Raina, A. Roy, N. Bharadvaja, Degradation of dyes using biologically synthesized silver and copper nanoparticles, Environ. Nanotechnol. Monit. Manage., 13 (2020) 100278, doi: 10.1016/j.enmm.2019.100278.
  24. H.S. El-Sheshtawy, H.M. El-Hosainy, K.R. Shoueir, I.M. El-Mehasseb, M. El-Kemary, Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of postillumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants, Appl. Surf. Sci., 467 (2019) 268–276.
  25. K. Kaur, R. Jindal, Comparative study on the behaviour of chitosan-gelatin based hydrogel and nanocomposite ion exchanger synthesized under microwave conditions towards photocatalytic removal of cationic dyes, Carbohydr. Polym., 207 (2019) 398–410.
  26. N. Benhadria, M. Hachemaoui, F. Zaoui, A. Mokhtar, S. Boukreris, T. Attar, L. Belarbi, B. Boukoussa, Catalytic reduction of methylene blue dye by copper oxide nanoparticles, J. Cluster Sci., 33 (2022) 249–260.
  27. Y.-C. Ho, S.-C. Chua, F.-K. Chong, Coagulation-Flocculation Technology in Water and Wastewater Treatment, Handbook of Research on Resource Management for Pollution and Waste Treatment, IGI Global, 2020,
    pp. 432–457.
  28. A. Bashir, L.A. Malik, S. Ahad, T. Manzoor, M.A. Bhat, G. Dar, A.H. Pandith, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Environ. Chem. Lett., 17 (2019) 729–754.
  29. S. Saghafi, A. Ebrahimi, N. Mehrdadi, G.N. Bidhendy, Evaluation of aerobic/anaerobic industrial wastewater treatment processes: the application of multi‐criteria decision analysis, Environ. Prog. Sustainable Energy, 38 (2019) 13166, doi: 10.1002/ep.13166.
  30. C.M. Neves, O.M. Filipe, N. Mota, S.A. Santos, A.J. Silvestre, E.B. Santos, M.G.P. Neves, M.M. Simões, Photodegradation of metoprolol using a porphyrin as photosensitizer under homogeneous and heterogeneous conditions, J. Hazard. Mater., 370 (2019) 13–23.
  31. K. Naseem, Z.H. Farooqi, M.Z. Ur Rehman, M.A. Ur Rehman, R. Begum, R. Huma, A. Shahbaz, J. Najeeb, A. Irfan, A systematic study for removal of heavy metals from aqueous media using Sorghum bicolor: an efficient biosorbent, Water Sci. Technol., 77 (2018) 2355–2368.
  32. W. Pronk, A. Ding, E. Morgenroth, N. Derlon, P. Desmond, M. Burkhardt, B. Wu, A.G. Fane, Gravity-driven membrane filtration for water and wastewater treatment: a review, Water Res., 149 (2019) 553–565.
  33. D. Modi, J. Patel, B. Shah, B. Nayak, Pharmacognostic studies of the seed of Syzygium cumini Linn, Pharm. Sci. Monit., 1 (2010) 20–26.
  34. A. Kumar, R. Ilavarasan, T. Jayachandran, M. Deecaraman, R.M. Kumar, P. Aravindan, N. Padmanabhan, M. Krishan, Anti-inflammatory activity of Syzygium cumini seed, Afr. J. Biotechnol., 7 (2008) 941–943.
  35. R. Prasad, V.S. Swamy, Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini, J. Nanopart., 2013 (2013) 431218, doi: 10.1155/2013/431218.
  36. M.I. Din, R. Rizwan, Z. Hussain, R. Khalid, Biogenic synthesis of mono dispersed Co/CoO nanoparticles using Syzygium cumini leaves for catalytic application, Inorg. Nano-Metal Chem., 51 (2021) 773–779.
  37. S. Yallappa, J. Manjanna, M. Sindhe, N. Satyanarayan, S. Pramod, K. Nagaraja, Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract, Spectrochim. Acta, Part A, 110 (2013) 108–115.
  38. O. Yeshchenko, Temperature effects on the surface plasmon resonance in copper nanoparticles, Ukr. J. Phys., 58 (2013) 249–259.
  39. G. Caroling, E. Vinodhini, A.M. Ranjitham, P. Shanthi, Biosynthesis of copper nanoparticles using aqueous Phyllanthus embilica (gooseberry) extract-characterisation and study of antimicrobial effects, Int. J. Nano. Chem., 1 (2015) 53–63.
  40. F. Samari, Z. Rahravan, A. Taheri, S. Yousefinejad, Controllable phyto-synthesised copper nanoparticles for antioxidant and label-free colorimetric iron detection purposes, Int. J. Environ. Anal. Chem., (2021) 1–19, doi: 10.1080/03067319.2021.1965133.
  41. M. Vanaja, G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi, G. Annadurai, Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors, J. Nanostruct. Chem., 3 (2013) 1–8.
  42. N. Gavade, A. Kadam, M. Suwarnkar, V. Ghodake, K. Garadkar, Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract, Spectrochim. Acta, Part A, 136 (2015) 953–960.
  43. Y. Suresh, S. Annapurna, A. Singh, G. Bhikshamaiah, Green synthesis and characterization of tea decoction stabilized copper nanoparticles, Int. J. Innov. Res. Sci. Eng. Technol., 3 (2014) 11265–11270.
  44. T.M.A. Ghany, M.M. Bakri, A.M. Al-Rajhi, M.A. Al Abboud, M. Alawlaqi, A.R.M. Shater, Impact of copper and its nanoparticles on growth, ultrastructure, and laccase production of Aspergillus niger using corn cobs wastes, BioResources, 15 (2020) 3289–3306.
  45. V. Kumar, S.C. Yadav, S.K. Yadav, Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization, J. Chem. Technol. Biotechnol., 85 (2010) 1301–1309.
  46. A. Jokic, M. Wang, C. Liu, A. Frenkel, P. Huang, Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: the role of δ-MnO2, Org. Geochem., 35 (2004) 747–762.
  47. I.M. Chung, A. Abdul Rahuman, S. Marimuthu, A. Vishnu Kirthi, K. Anbarasan, P. Padmini, G. Rajakumar, Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities, Exp. Therm. Med., 14 (2017) 18–24.
  48. K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties
    of Fe-doped ZnO nanoparticles prepared by chemical route, J. Alloys Compd., 588 (2014) 681–689.