References
- P.R. Thomas, D. Allen, D.L. McGregor, Evaluation of combined
chemical and biological nutrient removal, Water Sci. Technol.,
34 (1996) 285–292.
- J. Barnard, D. Houweling, H. Analla, M. Steichen, Saving
phosphorus removal at the Henderson NV plant, Water Sci.
Technol., 65 (2012) 1318–1322.
- J.L. Barnard, M.T. Steichen, Where is biological nutrient removal
going now?, Water Sci. Technol., 53 (2006) 155–164.
- A. Oehmen, P. Lemos, G. Gcarvalho, Z. Yuan, J. Keller,
L. Blackall, M. Reis, Advances in enhanced biological
phosphorus removal: from micro to macro scale, Water Res.,
41 (2007) 2271–2300.
- J.M.M. Santos, A. Martins, S. Barreto, L. Rieger, M. Reis,
A. Oehmen, Long-term simulation of a full-scale EBPR
plant with a novel metabolic-ASM model and its use as a
diagnostic tool, Water Res., 187 (2020) 116398, doi: 10.1016/j.watres.2020.116398.
- J.M.M. Santos, L. Rieger, A.B. Lanham, M. Carvalheira,
M.A.M. Reis, A. Oehmen, A novel metabolic-ASM model for
full-scale biological nutrient removal systems, Water Res.,
171 (2020) 115373, doi: 10.1016/j.watres.2019.115373.
- M. Henze, W. Gujer, T. Mino, T. Matsuo, M.C. Wentzel,
G.V.R. Marais, M.C.M. Van Loosdrecht, M.C.M. Loosdrecht,
Activated sludge model No.2d, ASM2d, Water Sci. Technol.,
1 (1999) 165–182.
- A. Vandekerckhove, W. Moerman, S.W.H. van Hulle, Fullscale
modelling of a food industry wastewater treatment plant
in view of process upgrade, Chem. Eng. J., 135 (2008) 185–194
- M. Vocks, C. Adam, B. Lesjean, R. Gnirss, M. Kraume,
Enhanced post-denitrification without addition of an external
carbon source in membrane bioreactors, Water Res., 39 (2005)
3360–3368.
- W.-J. Liu, Z.-R. Hu, R.L. Walker, P.L. Dold, Enhanced nutrient
removal MBR system with chemical addition for low effluent
TP, Water Sci. Technol., 6 (2011) 1298–1306.
- K. Xiao, Y. Xu, S. Liang, T. Lei, J. Sun, X. Wen, H. Zhang,
C. Chen, X. Huang, Engineering application of membrane
bioreactor for wastewater treatment in China: current state
and future prospect, Front. Environ. Sci. Eng., 8 (2014)
805–819.
- J. Guerrero, A. Guisasola, J.A. Baeza, Controlled crude glycerol
dosage to prevent EBPR failures in C/N/P removal WWTPs,
Chem. Eng. J., 271 (2015) 114–127.
- D. Wang, N.B. Tooker, V. Srinivasan, G. Li, L.A. Fernandez,
P. Schauer, A. Menniti, C. Maher, C.B. Bott, P. Dombrowski,
J.L. Barnard, A. Onnis-Hayden, A.Z. Gu, Side-stream enhanced
biological phosphorus removal (S2EBPR) process improves
system performance – a full-scale comparative study, Water
Res., 167 (2019) 109–115.
- B. Xing, M. Ouyang, N. Graham, W. Yu, Enhancement of
phosphate adsorption during mineral transformation of natural
siderite induced by humic acid: mechanism and application,
Chem. Eng. J., 393 (2020) 124–730.
- M. Carvalheira, A. Oehmen, G. Carvalho, M. Eusébio,
M.A.M. Reis, The impact of aeration on the competition
between polyphosphate accumulating organisms and glycogen
accumulating organisms, Water Res., 66 (2014) 296–307.
- S. Gabarrón, M. Dalmau, J. Porro, I. Rodriguez-Roda, J. Comas,
Optimization of full-scale membrane bioreactors for wastewater
treatment through a model-based approach, Chem. Eng. J.,
267 (2015) 34–42.
- J. Sun, P. Liang, X. Yan, K. Zuo, K. Xiao, J. Xia, Y. Qiu, Q. Wu,
S. Wu, X. Huang, M. Qi, X. Wen, Reducing aeration energy
consumption in a large-scale membrane bioreactor: process
simulation and engineering application, Water Res., 93 (2016)
205–213.
- B. Ding, X. Zhang, T. Bo, Research on intelligent control system
of A/A/O process for wastewater treatment pilot based on
ASM2D and fuzzy model, IOP Conf. Ser.: Earth Environ. Sci.,
371 (2019) 32060, doi: 10.1088/1755-1315/371/3/032060.
- A.C.O. Martins, M.C.A. Silva, A.D. Benetti, Evaluation and
optimization of ASM1 parameters using large-scale WWTP
monitoring data from a subtropical climate region in Brazil,
Water Pract. Technol., 17 (2022) 268–284.
- H. Hauduc, L. Rieger, A. Oehmen, M.C.M. van Loosdrecht,
Y. Comeau, A. Héduit, P.A. Vanrolleghem, S. Gillot, Critical
review of activated sludge modeling state of process knowledge,
Biotechnol. Bioeng., 110 (2013) 24–46.
- Beijing Municipal Statistical Yearbook of Water Affairs, Beijing
Water Authority, 2020.
- Z. Xing, Study on the Optimization and Modification of Sewage
Treatment Plant Using BioWin Software, Beijing University of
Civil Engineering and Architecture, 2016.
- Comprehensive Discharge Standard for Water Pollutants
(DB11/307–2013), Beijing Municipal Ecology and Environment
Bureau, Beijing Municipal Bureau of Market and Quality
Supervision, 2013.
- L. Yi An, W. Ping, F. Kai, Design and operation of the MBR
process at the Hedong Reclaimed Water Plant in Tongzhou,
Beijing, Water Wastewater Eng., 44 (2018) 15–17.
- Ministry of Environmental Protection China (4th ed.),
Water and Wastewater Monitoring and Analysis Method, China
Environmental Press, 2002.
- A. Mañas, B. Biscans, M. Spérandio, Biologically induced
phosphorus precipitation in aerobic granular sludge process,
Water Res., 45 (2011) 3776–3786.
- V.C. Machado, J. Lafuente, J.A. Baeza, Activated sludge
model 2d calibration with full-scale WWTP data: comparing
model parameter identifiability with influent and operational
uncertainty, Bioprocess. Biosyst. Eng., 7 (2013) 1271–1287.
- V.C. Machado, G. Tapia, D. Gabriel, J. Lafuente, J.A. Baeza,
Systematic identifiability study based on the fisher information
matrix for reducing the number of parameters calibration of an
activated sludge model, Environ. Modell. Software, 24 (2009)
1274–1284.
- P. Izadi, P. Izadi, A. Eldyasti, Understanding microbial shift
of enhanced biological phosphorus removal process (EBPR)
under different dissolved oxygen (DO) concentrations and
hydraulic retention time (HRTs), Biochem. Eng. J., 166 (2021)
107833, doi: 10.1016/j.bej.2020.107833.
- P. Brown, K. Ikuma, S.K. Ong, Biological phosphorus removal
and its microbial community in a modified full-scale activated
sludge system under dry and wet weather dynamics, Water
Res., 217 (2022) 118338, doi: 10.1016/j.watres.2022.118338.
- H. Liu, W. Zeng, Q. Meng, Z. Fan, Y. Peng, Phosphorus
removal performance, intracellular metabolites and clade-level
community structure of Tetrasphaera-dominated polyphosphate
accumulating organisms at different temperatures, Sci. Total
Environ., 842 (2022) 156913, doi: 10.1016/j.scitotenv.2022.156913.
- W. Zeng, L. Zhang, P. Fan, Community structures and
population dynamics of “Candidatus accumulibacter” in
activated sludges of wastewater treatment plants using ppk1 as
phylogenetic marker, J. Environ. Sci., 67 (2018) 237–248.
- T. McCue, R. Naik, M. Zepeda, Y.H. Liu, I. Vassiliev,
A.A. Randall, Changes in anoxic denitrification rate resulting
from prefermentation of a septic, phosphorus-limited wastewater,
Water Environ. Res., 76 (2004) 23–28.
- F.J. Rubio-Rincón, C.M. Lopez-Vazquez, L. Welles, M.C.M. van
Loosdrecht, D. Brdjanovic, Cooperation between Candidatus
Competibacter and Candidatus Accumulibacter clade I, in
denitrification and phosphate removal processes, Water Res.,
120 (2017) 156–164.
- G. Qiu, R. Zuniga-Montanez, Y. Law, S.S. Thi, T.Q.N. Nguyen,
K. Eganathan, X. Liu, P.H. Nielsen, R.B.H. Williams, S. Wuertz,
Polyphosphate-accumulating organisms in full-scale tropical
wastewater treatment plants use diverse carbon sources, Water
Res., 149 (2019) 496–510.