References

  1. P.R. Thomas, D. Allen, D.L. McGregor, Evaluation of combined chemical and biological nutrient removal, Water Sci. Technol., 34 (1996) 285–292.
  2. J. Barnard, D. Houweling, H. Analla, M. Steichen, Saving phosphorus removal at the Henderson NV plant, Water Sci. Technol., 65 (2012) 1318–1322.
  3. J.L. Barnard, M.T. Steichen, Where is biological nutrient removal going now?, Water Sci. Technol., 53 (2006) 155–164.
  4. A. Oehmen, P. Lemos, G. Gcarvalho, Z. Yuan, J. Keller, L. Blackall, M. Reis, Advances in enhanced biological phosphorus removal: from micro to macro scale, Water Res., 41 (2007) 2271–2300.
  5. J.M.M. Santos, A. Martins, S. Barreto, L. Rieger, M. Reis, A. Oehmen, Long-term simulation of a full-scale EBPR plant with a novel metabolic-ASM model and its use as a diagnostic tool, Water Res., 187 (2020) 116398, doi: 10.1016/j.watres.2020.116398.
  6. J.M.M. Santos, L. Rieger, A.B. Lanham, M. Carvalheira, M.A.M. Reis, A. Oehmen, A novel metabolic-ASM model for full-scale biological nutrient removal systems, Water Res., 171 (2020) 115373, doi: 10.1016/j.watres.2019.115373.
  7. M. Henze, W. Gujer, T. Mino, T. Matsuo, M.C. Wentzel, G.V.R. Marais, M.C.M. Van Loosdrecht, M.C.M. Loosdrecht, Activated sludge model No.2d, ASM2d, Water Sci. Technol., 1 (1999) 165–182.
  8. A. Vandekerckhove, W. Moerman, S.W.H. van Hulle, Fullscale modelling of a food industry wastewater treatment plant in view of process upgrade, Chem. Eng. J., 135 (2008) 185–194
  9. M. Vocks, C. Adam, B. Lesjean, R. Gnirss, M. Kraume, Enhanced post-denitrification without addition of an external carbon source in membrane bioreactors, Water Res., 39 (2005) 3360–3368.
  10. W.-J. Liu, Z.-R. Hu, R.L. Walker, P.L. Dold, Enhanced nutrient removal MBR system with chemical addition for low effluent TP, Water Sci. Technol., 6 (2011) 1298–1306.
  11. K. Xiao, Y. Xu, S. Liang, T. Lei, J. Sun, X. Wen, H. Zhang, C. Chen, X. Huang, Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect, Front. Environ. Sci. Eng., 8 (2014) 805–819.
  12. J. Guerrero, A. Guisasola, J.A. Baeza, Controlled crude glycerol dosage to prevent EBPR failures in C/N/P removal WWTPs, Chem. Eng. J., 271 (2015) 114–127.
  13. D. Wang, N.B. Tooker, V. Srinivasan, G. Li, L.A. Fernandez, P. Schauer, A. Menniti, C. Maher, C.B. Bott, P. Dombrowski, J.L. Barnard, A. Onnis-Hayden, A.Z. Gu, Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance – a full-scale comparative study, Water Res., 167 (2019) 109–115.
  14. B. Xing, M. Ouyang, N. Graham, W. Yu, Enhancement of phosphate adsorption during mineral transformation of natural siderite induced by humic acid: mechanism and application, Chem. Eng. J., 393 (2020) 124–730.
  15. M. Carvalheira, A. Oehmen, G. Carvalho, M. Eusébio, M.A.M. Reis, The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms, Water Res., 66 (2014) 296–307.
  16. S. Gabarrón, M. Dalmau, J. Porro, I. Rodriguez-Roda, J. Comas, Optimization of full-scale membrane bioreactors for wastewater treatment through a model-based approach, Chem. Eng. J., 267 (2015) 34–42.
  17. J. Sun, P. Liang, X. Yan, K. Zuo, K. Xiao, J. Xia, Y. Qiu, Q. Wu, S. Wu, X. Huang, M. Qi, X. Wen, Reducing aeration energy consumption in a large-scale membrane bioreactor: process simulation and engineering application, Water Res., 93 (2016) 205–213.
  18. B. Ding, X. Zhang, T. Bo, Research on intelligent control system of A/A/O process for wastewater treatment pilot based on ASM2D and fuzzy model, IOP Conf. Ser.: Earth Environ. Sci., 371 (2019) 32060, doi: 10.1088/1755-1315/371/3/032060.
  19. A.C.O. Martins, M.C.A. Silva, A.D. Benetti, Evaluation and optimization of ASM1 parameters using large-scale WWTP monitoring data from a subtropical climate region in Brazil, Water Pract. Technol., 17 (2022) 268–284.
  20. H. Hauduc, L. Rieger, A. Oehmen, M.C.M. van Loosdrecht, Y. Comeau, A. Héduit, P.A. Vanrolleghem, S. Gillot, Critical review of activated sludge modeling state of process knowledge, Biotechnol. Bioeng., 110 (2013) 24–46.
  21. Beijing Municipal Statistical Yearbook of Water Affairs, Beijing Water Authority, 2020.
  22. Z. Xing, Study on the Optimization and Modification of Sewage Treatment Plant Using BioWin Software, Beijing University of Civil Engineering and Architecture, 2016.
  23. Comprehensive Discharge Standard for Water Pollutants (DB11/307–2013), Beijing Municipal Ecology and Environment Bureau, Beijing Municipal Bureau of Market and Quality Supervision, 2013.
  24. L. Yi An, W. Ping, F. Kai, Design and operation of the MBR process at the Hedong Reclaimed Water Plant in Tongzhou, Beijing, Water Wastewater Eng., 44 (2018) 15–17.
  25. Ministry of Environmental Protection China (4th ed.), Water and Wastewater Monitoring and Analysis Method, China Environmental Press, 2002.
  26. A. Mañas, B. Biscans, M. Spérandio, Biologically induced phosphorus precipitation in aerobic granular sludge process, Water Res., 45 (2011) 3776–3786.
  27. V.C. Machado, J. Lafuente, J.A. Baeza, Activated sludge model 2d calibration with full-scale WWTP data: comparing model parameter identifiability with influent and operational uncertainty, Bioprocess. Biosyst. Eng., 7 (2013) 1271–1287.
  28. V.C. Machado, G. Tapia, D. Gabriel, J. Lafuente, J.A. Baeza, Systematic identifiability study based on the fisher information matrix for reducing the number of parameters calibration of an activated sludge model, Environ. Modell. Software, 24 (2009) 1274–1284.
  29. P. Izadi, P. Izadi, A. Eldyasti, Understanding microbial shift of enhanced biological phosphorus removal process (EBPR) under different dissolved oxygen (DO) concentrations and hydraulic retention time (HRTs), Biochem. Eng. J., 166 (2021) 107833, doi: 10.1016/j.bej.2020.107833.
  30. P. Brown, K. Ikuma, S.K. Ong, Biological phosphorus removal and its microbial community in a modified full-scale activated sludge system under dry and wet weather dynamics, Water Res., 217 (2022) 118338, doi: 10.1016/j.watres.2022.118338.
  31. H. Liu, W. Zeng, Q. Meng, Z. Fan, Y. Peng, Phosphorus removal performance, intracellular metabolites and clade-level community structure of Tetrasphaera-dominated polyphosphate accumulating organisms at different temperatures, Sci. Total Environ., 842 (2022) 156913, doi: 10.1016/j.scitotenv.2022.156913.
  32. W. Zeng, L. Zhang, P. Fan, Community structures and population dynamics of “Candidatus accumulibacter” in activated sludges of wastewater treatment plants using ppk1 as phylogenetic marker, J. Environ. Sci., 67 (2018) 237–248.
  33. T. McCue, R. Naik, M. Zepeda, Y.H. Liu, I. Vassiliev, A.A. Randall, Changes in anoxic denitrification rate resulting from prefermentation of a septic, phosphorus-limited wastewater, Water Environ. Res., 76 (2004) 23–28.
  34. F.J. Rubio-Rincón, C.M. Lopez-Vazquez, L. Welles, M.C.M. van Loosdrecht, D. Brdjanovic, Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes, Water Res., 120 (2017) 156–164.
  35. G. Qiu, R. Zuniga-Montanez, Y. Law, S.S. Thi, T.Q.N. Nguyen, K. Eganathan, X. Liu, P.H. Nielsen, R.B.H. Williams, S. Wuertz, Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources, Water Res., 149 (2019) 496–510.