References

  1. P. Ganesan, R. Kamaraj, S. Vasudevan, Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution, J. Taiwan Inst. Chem. Eng., 44 (2013) 808–814.
  2. H.J.M. Van Grinsven, A. Tiktak, C.W. Rougoor, Evaluation of the Dutch implementation of the nitrates directive, the water framework directive and the national emission ceilings directive, NJAS Wageningen J. Life Sci., 78 (2016) 69–84.
  3. A. Azhdarpoor, M. Radfard, M. Pakdel, A. Abbasnia, A. Badeenezhad, A.A. Mohammadi, M. Yousefi, Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran, Desal. Water Treat., 149 (2019) 43–51.
  4. I. Vitoria, F. Maraver, F. Sánchez-Valverde, F. Armijo, Contenido en nitratos de aguas de consumo público españolas, Gac Sanit, 29 (2015) 217–220.
  5. P. Taneja, P. Labhasetwar, P. Nagarnaik, J.H. Ensink, The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India, J. Water Health, 15 (2017) 602–614.
  6. A. Alighardashi, M.J. Mehrani, Survey and zoning of nitratecontaminated groundwater in Iran, J. Mater. Environ. Sci., 8 (2017) 4339–4348.
  7. L. Xu, H. Niu, J. Xu, X. Wang, Nitrate-nitrogen leaching and modeling in intensive agriculture farmland in China, Sci. World J., 2013 (2013) 353086, doi: 10.1155/2013/353086.
  8. G. Yu, J. Wang, L. Liu, Y. Li, Y. Zhang, S. Wang, The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai, China, BMC Public Health, 20 (2020) 1–6.
  9. C. Li, S.-L. Li, F.-J. Yue, J. Liu, J. Zhong, Z.-F. Yan, R.-C. Zhang, Z.-J. Wang, S. Xu, Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model, Sci. Total Environ., 646 (2019) 801–810.
  10. M. Radfarda, A. Gholizadehc, A. Azhdarpoorb, A. Badeenezhada, A.A. Mohammadid, M. Yousefie, Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan city, arid region, southeastern Iran, Desal. Water Treat., 145 (2019) 249–256.
  11. Fathmawati, J. Fachiroh, E. Gravitiani, Sarto, A.H. Husodo, Nitrate in drinking water and risk of colorectal cancer in Yogyakarta, Indonesia, J. Toxicol. Environ. Health Part A, 80 (2017) 120–128.
  12. M. Parvizishad, A. Dalvand, A.H. Mahvi, F. Goodarzi, A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health, Health Scope, 6 (2017) e14164, doi: 10.5812/jhealthscope.14164.
  13. M. Alimohammadi, N. Latifi, R. Nabizadeh, K. Yaghmaeian, A.H. Mahvi, M. Yousefi, P. Foroohar, S. Hemmati, Z. Heidarinejad, Determination of nitrate concentration and its risk assessment in bottled water in Iran, Data Brief, 19 (2018) 2133–2138.
  14. F. Rezvani, M.-H. Sarrafzadeh, S. Ebrahimi, H.-M. Oh, Nitrate removal from drinking water with a focus on biological methods: a review, Environ. Sci. Pollut. Res., 26 (2019) 1124–1141.
  15. Y.-N. Wang, K. Goh, X. Li, L. Setiawan, R. Wang, Membranes and processes for forward osmosis-based desalination: recent advances and future prospects, Desalination, 434 (2018) 81–99.
  16. E. Obotey Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes, 10 (2020) 89, doi: 10.3390/membranes10050089.
  17. K.S. Rajmohan, M. Gopinath, R. Chetty, Review on challenges and opportunities in the removal of nitrate from wastewater using electrochemical method, J. Environ. Biol., 37 (2016) 1519–1528.
  18. F. Yao, Q. Yang, Y. Zhong, X. Shu, F. Chen, J. Sun, Y. Ma, Z. Fu, D. Wang, X. Li, Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism, Water Res., 157 (2019) 191–200.
  19. M. Guo, L. Feng, Y. Liu, L. Zhang, Electrochemical simultaneous denitrification and removal of phosphorus from the effluent of a municipal wastewater treatment plant using cheap metal electrodes, Environ. Sci. Water Res. Technol., 6 (2020) 1095–1105.
  20. J.F. Su, I. Ruzybayev, I. Shah, C. Huang, The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold, Appl. Catal., B, 180 (2016) 199–209.
  21. M. Moradi, S.N. Ashrafizadeh, Nitrate removal from tapwater by means of electrocoagulation-flotation process, Sep. Sci. Technol., 55 (2020) 1577–1587.
  22. G. Kashi, Optimization of electrochemical process for removing sulfate from drinking water by Taguchi model, Int. J. Curr. Res., 7 (2015) 17409–17414.
  23. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 2012.
  24. K. Giti, J. Narges, Optimization electrophotocatalytic removal of Acid red 18 from drinking water by the Taguchi model, Bulg. Chem. Commun., 47 (2015) 179–186.
  25. G. Kashi, Optimization of electrochemical process for phenanthrene removal from aqueous medium by Taguchi, Toxicol. Environ. Chem., 99 (2017) 772–782.
  26. P. Saxena, J. Ruparelia, Effect of electrode materials on electrochemical removal of Reactive black 5, Int. J. Adv. Res. Eng. Technol. (IJARET), 7 (2016) 53–63.
  27. T. Kim, T.-K. Kim, K.-D. Zoh, Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes, J. Water Process Eng., 33 (2020) 101109, doi: 10.1016/j.jwpe.2019.101109.
  28. M. Majlesi, S.M. Mohseny, M. Sardar, S. Golmohammadi, A. Sheikhmohammadi, Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes, Sustainable Environ. Res., 26 (2016) 287–290.
  29. J. Yao, M. Zhou, D. Wen, Q. Xue, J. Wang, Electrochemical conversion of ammonia to nitrogen in non-chlorinated aqueous solution by controlling pH value, J. Electroanal. Chem., 776 (2016) 53–58.
  30. G. Barzegar, J. Wu, F. Ghanbari, Enhanced treatment of greywater using electrocoagulation/ozonation: investigation of process parameters, Process Saf. Environ. Prot., 121 (2019) 125–132.
  31. S. Yang, X. Hu, X. You, W. Zhang, Y. Liu, W. Liang, Removal of ammonia using persulfate during the nitrate electro-reduction process, Int. J. Environ. Res. Public Health, 19 (2022) 3270, doi: 10.3390/ijerph19063270.
  32. J. Yao, Y. Mei, G. Xia, Y. Lu, D. Xu, N. Sun, J. Wang, J. Chen, Process optimization of electrochemical oxidation of ammonia to nitrogen for actual dyeing wastewater treatment, Int. J. Environ. Res. Public Health, 16 (2019) 2931, doi: 10.3390/ijerph16162931.
  33. L. Rajic, D. Berroa, S. Gregor, S. Elbakri, M. MacNeil, A.N. Alshawabkeh, Electrochemically-induced reduction of nitrate in aqueous solution, Int. J. Electrochem. Sci., 12 (2017) 5998, doi: 10.20964/2017.07.38.
  34. W. Gao, L. Gao, D. Li, K. Huang, L. Cui, J. Meng, J. Liang, Removal of nitrate from water by the electrocatalytic denitrification on the Cu-Bi electrode, J. Electroanal. Chem., 817 (2018) 202–209.
  35. S. Uludag-Demirer, N. Olson, R. Ives, J.P. Nshimyimana, C.A. Rusinek, J.B. Rose, W. Liao, Techno-economic analysis of electrocoagulation on water reclamation and bacterial/viral indicator reductions of a high-strength organic wastewater— anaerobic digestion effluent, Sustainability, 12 (2020) 2697, doi: 10.3390/su12072697.
  36. A. Jafarizad, M. Rostamizadeh, M. Zarei, S. Gharibian, Mitoxantrone removal by electrochemical method: a comparison of homogenous and heterogenous catalytic reactions, Environ. Health Eng. Manage. J., 4 (2017) 185–193.
  37. Q. Liu, X. Li, Y. Wu, M. Qing, G. Tan, D. Xiao, Pine pollen derived porous carbon with efficient capacitive deionization performance, Electrochim. Acta, 298 (2019) 360–371.
  38. J. Yao, Y. Mei, J. Jiang, G. Xia, J. Chen, Process optimization of electrochemical treatment of COD and total nitrogen containing wastewater, Int. J. Environ. Res. Public Health, 19 (2022) 850, doi: 10.3390/ijerph19020850.
  39. T. Rookesh, M.R. Samaei, S. Yousefinejad, H. Hashemi, Z. Derakhshan, F. Abbasi, M. Jalili, S. Giannakis, M. Bilal, Investigating the electrocoagulation treatment of landfill leachate by iron/graphite electrodes: process parameters and efficacy assessment, Water, 14 (2022) 205, doi: 10.3390/w14020205.
  40. E. Bazrafshan, A.H. Mahvi, Textile wastewater treatment by electrocoagulation process using aluminum electrodes, Iran J. Health Sci., 2 (2014) 16–29.
  41. S. Guo, Z. Xu, W. Hu, D. Yang, X. Wang, H. Xu, X. Xu, Z. Long, W. Yan, Progress in preparation and application of titanium sub-oxides electrode in electrocatalytic degradation for wastewater treatment, Catalysts, 12 (2022) 618, doi: 10.3390/catal12060618.
  42. M. Ebba, P. Asaithambi, E. Alemayehu, Investigation on operating parameters and cost using an electrocoagulation process for wastewater treatment, Appl. Water Sci., 11 (2021) 1–9.
  43. B. Malinovic, M. Pavlovic, N. Halilovic, Electrochemical removal of nitrate from wastewater using copper cathode, J. Environ. Prot. Ecol., 16 (2015) 1273–1281.
  44. J. Rodziewicz, A. Mielcarek, W. Janczukowicz, K. Bryszewski, Electric power consumption and current efficiency of electrochemical and electrobiological rotating disk contactors removing nutrients from wastewater generated in soil-less plant cultivation systems, Water, 12 (2020) 213, doi: 10.3390/w12010213.
  45. A. Hooshmandfar, B. Ayati, A. Khodadadi Darban, Optimization of material and energy consumption for removal of Acid Red 14 by simultaneous electrocoagulation and electroflotation, Water Sci. Technol., 73 (2016) 192–202.
  46. B. Mohebrad, A. Rezaee, S. Dehghani, Anionic surfactant removal using electrochemical process: effect of electrode materials and energy consumption, Iran J. Health Saf. Environ., 5 (2018) 939–946.
  47. N. Kishimoto, Y. Nakamura, M. Kato, H. Otsu, Effect of oxidation–reduction potential on an electrochemical Fentontype process, Chem. Eng. J., 260 (2015) 590–595.
  48. H. Masoumbeigi, F. Gholami, S.A. Yahyapour, G. Ghanizadeh, Optimization of the electrochemical reduction process and ORP effects in nitrate removal, Water Environ. Res., 94 (2022) e1662, doi: 10.1002/wer.1662.
  49. H. Hossini, A. Rezaee, Optimization of nitrate reduction by electrocoagulation using response surface methodology, Health Scope, 3 (2014) e17795, doi: 10.17795/jhealthscope-17795.
  50. S. Lackner, C. Lindenblatt, H. Horn, ‘Swinging ORP’ as operation strategy for stable reject water treatment by nitritation–anammox in sequencing batch reactors, Chem. Eng. J., 180 (2012) 190–196.
  51. X. Chen, P. Ren, T. Li, J.P. Trembly, X. Liu, Zinc removal from model wastewater by electrocoagulation: processing, kinetics and mechanism, Chem. Eng. J., 349 (2018) 358–367.
  52. V.K. Jadhao, S. Kodape, K. Junghare, Optimization of electrocoagulation process for fluoride removal: a blending approach using gypsum plaster rich wastewater, Sustainable Environ. Res., 29 (2019) 1–9.
  53. J.C. García-Prieto, L.A. González-Burciaga, J.B. Proal-Nájera, M. García-Roig, Kinetic study and modeling of the degradation of aqueous ammonium/ammonia solutions by heterogeneous photocatalysis with TiO2 in a UV-C pilot photoreactor, Catalysts, 12 (2022) 352, doi: 10.3390/catal12030352.
  54. J. Hou, X. Li, Y. Yan, L. Wang, Electrochemical oxidation of methyl orange in an active carbon packed electrode reactor (ACPER): degradation performance and kinetic simulation, Int. J. Environ. Res. Public Health, 19 (2022) 4775, doi: 10.3390/ ijerph19084775.
  55. F. Ghanbari, M. Moradi, A. Mohseni-Bandpei, F. Gohari, T. Mirtaleb Abkenar, E. Aghayani, Simultaneous application of iron and aluminum anodes for nitrate removal: a comprehensive parametric study, Int. J. Environ. Sci. Technol., 11 (2014) 1653–1660.