References
- P. Ganesan, R. Kamaraj, S. Vasudevan, Application of isotherm,
kinetic and thermodynamic models for the adsorption of
nitrate ions on graphene from aqueous solution, J. Taiwan Inst.
Chem. Eng., 44 (2013) 808–814.
- H.J.M. Van Grinsven, A. Tiktak, C.W. Rougoor, Evaluation
of the Dutch implementation of the nitrates directive, the
water framework directive and the national emission ceilings
directive, NJAS Wageningen J. Life Sci., 78 (2016) 69–84.
- A. Azhdarpoor, M. Radfard, M. Pakdel, A. Abbasnia,
A. Badeenezhad, A.A. Mohammadi, M. Yousefi, Assessing
fluoride and nitrate contaminants in drinking water resources
and their health risk assessment in a semiarid region of
southwest Iran, Desal. Water Treat., 149 (2019) 43–51.
- I. Vitoria, F. Maraver, F. Sánchez-Valverde, F. Armijo, Contenido
en nitratos de aguas de consumo público españolas, Gac Sanit,
29 (2015) 217–220.
- P. Taneja, P. Labhasetwar, P. Nagarnaik, J.H. Ensink, The risk
of cancer as a result of elevated levels of nitrate in drinking
water and vegetables in Central India, J. Water Health,
15 (2017) 602–614.
- A. Alighardashi, M.J. Mehrani, Survey and zoning of nitratecontaminated
groundwater in Iran, J. Mater. Environ. Sci.,
8 (2017) 4339–4348.
- L. Xu, H. Niu, J. Xu, X. Wang, Nitrate-nitrogen leaching
and modeling in intensive agriculture farmland in China,
Sci. World J., 2013 (2013) 353086, doi: 10.1155/2013/353086.
- G. Yu, J. Wang, L. Liu, Y. Li, Y. Zhang, S. Wang, The analysis
of groundwater nitrate pollution and health risk assessment in
rural areas of Yantai, China, BMC Public Health, 20 (2020) 1–6.
- C. Li, S.-L. Li, F.-J. Yue, J. Liu, J. Zhong, Z.-F. Yan, R.-C. Zhang,
Z.-J. Wang, S. Xu, Identification of sources and transformations
of nitrate in the Xijiang River using nitrate isotopes and
Bayesian model, Sci. Total Environ., 646 (2019) 801–810.
- M. Radfarda, A. Gholizadehc, A. Azhdarpoorb,
A. Badeenezhada, A.A. Mohammadid, M. Yousefie, Health
risk assessment to fluoride and nitrate in drinking water
of rural residents living in the Bardaskan city, arid region,
southeastern Iran, Desal. Water Treat., 145 (2019) 249–256.
- Fathmawati, J. Fachiroh, E. Gravitiani, Sarto, A.H. Husodo,
Nitrate in drinking water and risk of colorectal cancer in
Yogyakarta, Indonesia, J. Toxicol. Environ. Health Part A,
80 (2017) 120–128.
- M. Parvizishad, A. Dalvand, A.H. Mahvi, F. Goodarzi, A review
of adverse effects and benefits of nitrate and nitrite in drinking
water and food on human health, Health Scope, 6 (2017) e14164,
doi: 10.5812/jhealthscope.14164.
- M. Alimohammadi, N. Latifi, R. Nabizadeh, K. Yaghmaeian,
A.H. Mahvi, M. Yousefi, P. Foroohar, S. Hemmati,
Z. Heidarinejad, Determination of nitrate concentration and its
risk assessment in bottled water in Iran, Data Brief, 19 (2018)
2133–2138.
- F. Rezvani, M.-H. Sarrafzadeh, S. Ebrahimi, H.-M. Oh, Nitrate
removal from drinking water with a focus on biological
methods: a review, Environ. Sci. Pollut. Res., 26 (2019)
1124–1141.
- Y.-N. Wang, K. Goh, X. Li, L. Setiawan, R. Wang, Membranes
and processes for forward osmosis-based desalination: recent
advances and future prospects, Desalination, 434 (2018) 81–99.
- E. Obotey Ezugbe, S. Rathilal, Membrane technologies in
wastewater treatment: a review, Membranes, 10 (2020) 89,
doi: 10.3390/membranes10050089.
- K.S. Rajmohan, M. Gopinath, R. Chetty, Review on challenges
and opportunities in the removal of nitrate from wastewater
using electrochemical method, J. Environ. Biol., 37 (2016)
1519–1528.
- F. Yao, Q. Yang, Y. Zhong, X. Shu, F. Chen, J. Sun, Y. Ma, Z. Fu,
D. Wang, X. Li, Indirect electrochemical reduction of nitrate
in water using zero-valent titanium anode: factors, kinetics,
and mechanism, Water Res., 157 (2019) 191–200.
- M. Guo, L. Feng, Y. Liu, L. Zhang, Electrochemical simultaneous
denitrification and removal of phosphorus from the effluent
of a municipal wastewater treatment plant using cheap
metal electrodes, Environ. Sci. Water Res. Technol., 6 (2020)
1095–1105.
- J.F. Su, I. Ruzybayev, I. Shah, C. Huang, The electrochemical
reduction of nitrate over micro-architectured metal electrodes
with stainless steel scaffold, Appl. Catal., B, 180 (2016) 199–209.
- M. Moradi, S.N. Ashrafizadeh, Nitrate removal from tapwater
by means of electrocoagulation-flotation process, Sep. Sci.
Technol., 55 (2020) 1577–1587.
- G. Kashi, Optimization of electrochemical process for removing
sulfate from drinking water by Taguchi model, Int. J. Curr. Res.,
7 (2015) 17409–17414.
- E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard
Methods for the Examination of Water and Wastewater,
American Public Health Association, Washington, D.C., 2012.
- K. Giti, J. Narges, Optimization electrophotocatalytic removal
of Acid red 18 from drinking water by the Taguchi model,
Bulg. Chem. Commun., 47 (2015) 179–186.
- G. Kashi, Optimization of electrochemical process for
phenanthrene removal from aqueous medium by Taguchi,
Toxicol. Environ. Chem., 99 (2017) 772–782.
- P. Saxena, J. Ruparelia, Effect of electrode materials on
electrochemical removal of Reactive black 5, Int. J. Adv. Res.
Eng. Technol. (IJARET), 7 (2016) 53–63.
- T. Kim, T.-K. Kim, K.-D. Zoh, Removal mechanism of heavy
metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during
electrocoagulation using Fe and Al electrodes, J. Water Process
Eng., 33 (2020) 101109, doi: 10.1016/j.jwpe.2019.101109.
- M. Majlesi, S.M. Mohseny, M. Sardar, S. Golmohammadi,
A. Sheikhmohammadi, Improvement of aqueous nitrate
removal by using continuous electrocoagulation/electroflotation
unit with vertical monopolar electrodes,
Sustainable Environ. Res., 26 (2016) 287–290.
- J. Yao, M. Zhou, D. Wen, Q. Xue, J. Wang, Electrochemical
conversion of ammonia to nitrogen in non-chlorinated aqueous
solution by controlling pH value, J. Electroanal. Chem.,
776 (2016) 53–58.
- G. Barzegar, J. Wu, F. Ghanbari, Enhanced treatment of
greywater using electrocoagulation/ozonation: investigation
of process parameters, Process Saf. Environ. Prot., 121 (2019)
125–132.
- S. Yang, X. Hu, X. You, W. Zhang, Y. Liu, W. Liang, Removal of
ammonia using persulfate during the nitrate electro-reduction
process, Int. J. Environ. Res. Public Health, 19 (2022) 3270,
doi: 10.3390/ijerph19063270.
- J. Yao, Y. Mei, G. Xia, Y. Lu, D. Xu, N. Sun, J. Wang, J. Chen,
Process optimization of electrochemical oxidation of ammonia
to nitrogen for actual dyeing wastewater treatment, Int. J.
Environ. Res. Public Health, 16 (2019) 2931, doi: 10.3390/ijerph16162931.
- L. Rajic, D. Berroa, S. Gregor, S. Elbakri, M. MacNeil,
A.N. Alshawabkeh, Electrochemically-induced reduction of
nitrate in aqueous solution, Int. J. Electrochem. Sci., 12 (2017)
5998, doi: 10.20964/2017.07.38.
- W. Gao, L. Gao, D. Li, K. Huang, L. Cui, J. Meng, J. Liang,
Removal of nitrate from water by the electrocatalytic
denitrification on the Cu-Bi electrode, J. Electroanal. Chem.,
817 (2018) 202–209.
- S. Uludag-Demirer, N. Olson, R. Ives, J.P. Nshimyimana,
C.A. Rusinek, J.B. Rose, W. Liao, Techno-economic analysis of
electrocoagulation on water reclamation and bacterial/viral
indicator reductions of a high-strength organic wastewater—
anaerobic digestion effluent, Sustainability, 12 (2020) 2697,
doi: 10.3390/su12072697.
- A. Jafarizad, M. Rostamizadeh, M. Zarei, S. Gharibian,
Mitoxantrone removal by electrochemical method: a
comparison of homogenous and heterogenous catalytic
reactions, Environ. Health Eng. Manage. J., 4 (2017) 185–193.
- Q. Liu, X. Li, Y. Wu, M. Qing, G. Tan, D. Xiao, Pine pollen
derived porous carbon with efficient capacitive deionization
performance, Electrochim. Acta, 298 (2019) 360–371.
- J. Yao, Y. Mei, J. Jiang, G. Xia, J. Chen, Process optimization of
electrochemical treatment of COD and total nitrogen containing
wastewater, Int. J. Environ. Res. Public Health, 19 (2022) 850,
doi: 10.3390/ijerph19020850.
- T. Rookesh, M.R. Samaei, S. Yousefinejad, H. Hashemi,
Z. Derakhshan, F. Abbasi, M. Jalili, S. Giannakis, M. Bilal,
Investigating the electrocoagulation treatment of landfill
leachate by iron/graphite electrodes: process parameters
and efficacy assessment, Water, 14 (2022) 205, doi: 10.3390/w14020205.
- E. Bazrafshan, A.H. Mahvi, Textile wastewater treatment by
electrocoagulation process using aluminum electrodes, Iran J.
Health Sci., 2 (2014) 16–29.
- S. Guo, Z. Xu, W. Hu, D. Yang, X. Wang, H. Xu, X. Xu, Z. Long,
W. Yan, Progress in preparation and application of titanium
sub-oxides electrode in electrocatalytic degradation for
wastewater treatment, Catalysts, 12 (2022) 618, doi: 10.3390/catal12060618.
- M. Ebba, P. Asaithambi, E. Alemayehu, Investigation on
operating parameters and cost using an electrocoagulation
process for wastewater treatment, Appl. Water Sci., 11 (2021)
1–9.
- B. Malinovic, M. Pavlovic, N. Halilovic, Electrochemical
removal of nitrate from wastewater using copper cathode,
J. Environ. Prot. Ecol., 16 (2015) 1273–1281.
- J. Rodziewicz, A. Mielcarek, W. Janczukowicz, K. Bryszewski,
Electric power consumption and current efficiency of
electrochemical and electrobiological rotating disk contactors
removing nutrients from wastewater generated in soil-less
plant cultivation systems, Water, 12 (2020) 213, doi: 10.3390/w12010213.
- A. Hooshmandfar, B. Ayati, A. Khodadadi Darban, Optimization
of material and energy consumption for removal of Acid Red
14 by simultaneous electrocoagulation and electroflotation,
Water Sci. Technol., 73 (2016) 192–202.
- B. Mohebrad, A. Rezaee, S. Dehghani, Anionic surfactant
removal using electrochemical process: effect of electrode
materials and energy consumption, Iran J. Health Saf. Environ.,
5 (2018) 939–946.
- N. Kishimoto, Y. Nakamura, M. Kato, H. Otsu, Effect of
oxidation–reduction potential on an electrochemical Fentontype
process, Chem. Eng. J., 260 (2015) 590–595.
- H. Masoumbeigi, F. Gholami, S.A. Yahyapour, G. Ghanizadeh,
Optimization of the electrochemical reduction process
and ORP effects in nitrate removal, Water Environ. Res.,
94 (2022) e1662, doi: 10.1002/wer.1662.
- H. Hossini, A. Rezaee, Optimization of nitrate reduction
by electrocoagulation using response surface methodology,
Health Scope, 3 (2014) e17795, doi: 10.17795/jhealthscope-17795.
- S. Lackner, C. Lindenblatt, H. Horn, ‘Swinging ORP’
as operation strategy for stable reject water treatment
by nitritation–anammox in sequencing batch reactors,
Chem. Eng. J., 180 (2012) 190–196.
- X. Chen, P. Ren, T. Li, J.P. Trembly, X. Liu, Zinc removal from
model wastewater by electrocoagulation: processing, kinetics
and mechanism, Chem. Eng. J., 349 (2018) 358–367.
- V.K. Jadhao, S. Kodape, K. Junghare, Optimization
of electrocoagulation process for fluoride removal: a
blending approach using gypsum plaster rich wastewater,
Sustainable Environ. Res., 29 (2019) 1–9.
- J.C. García-Prieto, L.A. González-Burciaga, J.B. Proal-Nájera,
M. García-Roig, Kinetic study and modeling of the degradation
of aqueous ammonium/ammonia solutions by heterogeneous
photocatalysis with TiO2 in a UV-C pilot photoreactor,
Catalysts, 12 (2022) 352, doi: 10.3390/catal12030352.
- J. Hou, X. Li, Y. Yan, L. Wang, Electrochemical oxidation of
methyl orange in an active carbon packed electrode reactor
(ACPER): degradation performance and kinetic simulation,
Int. J. Environ. Res. Public Health, 19 (2022) 4775, doi: 10.3390/
ijerph19084775.
- F. Ghanbari, M. Moradi, A. Mohseni-Bandpei, F. Gohari,
T. Mirtaleb Abkenar, E. Aghayani, Simultaneous application of
iron and aluminum anodes for nitrate removal: a comprehensive
parametric study, Int. J. Environ. Sci. Technol., 11 (2014)
1653–1660.