References

  1. N.A. Yusoff, N. Ngadi, H. Alias, M. Jusoh, Chemically treated chicken bone waste as an efficient adsorbent for removal of acetaminophen, Chem. Eng. Trans., 56 (2017) 925–930.
  2. S.I. Abou-Elela, S.A. El-Shafai, M.E. Fawzy, M.S. Hellal, O. Kamal, Management of shock loads wastewater produced from water heaters industry, Int. J. Environ. Sci. Technol., 15 (2017) 743–754.
  3. H.M. Ahmed, E.F. Mariam, F.N. Hossam, Effective chemical coagulation treatment process for cationic and anionic dyes degradation, Egypt. J. Chem., 65 (2022) 299–307.
  4. S.I. Abou-Elela, M.E. Fawzy, S.A. El-Shafai, Treatment of hazardous wastewater generated from metal finishing and electrocoating industry via self-coagulation: case study, Water Environ. Res., 93 (2021) 1476–1486.
  5. L. Yu, D.P. Gamliel, B. Markunas, J.A. Valla, A promising solution for food waste: preparing activated carbons for phenol removal from water streams, ACS Omega, 6 (2021) 8870–8883.
  6. H.F. Nassar, M.E. Fawzy, Evaluation of sand filter as a nonconventional post treatment of oil refinery wastewater: effect of flow rate, Egypt. J. Chem., 64 (2021) 3935–3942.
  7. M.C Lakshmi, V. Sridevi, A review on biodegradation of phenol from industrial effluents, J. Ind. Pollut. Control, 25 (2009) 13–27.
  8. M.E. Fawzy, I. Abdelfattah, M.E. Abuarab, E. Mostafa, K.M. Aboelghait, M.H. El-Awady, Sustainable approach for pharmaceutical wastewater treatment and reuse: case study, Environ. Sci. Technol., 11 (2018) 209–219.
  9. K.K. Thasneema, T. Dipin, M.S. Thayyil, P.K. Sahu, M. Messali, T. Rosalin, T.B. Hadda, Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial waste water using phosphonium based ionic liquids, J. Mol. Liq., 323 (2021) 114645, doi: 10.1016/j.molliq.2020.114645.
  10. Z.Z. Ismail, H.N. AbdelKareem, Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete, Waste Manage., 45 (2015) 66–75.
  11. C. Arora, D. Sahu, D. Bharti, V. Tamrakar, S. Soni, S. Sharma, Adsorption of hazardous dye crystal violet from industrial waste using low-cost adsorbent Chenopodium album, Desal. Water Treat., 167 (2019) 324–332.
  12. C. Arora, P. Kumar, S. Soni, J. Mittal, A. Mittal, B. Singh, Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon, Desal. Water Treat., 195 (2020) 341–352.
  13. S.S. Alquzweeni, R.S Alkizwini, Removal of cadmium from contaminated water using coated chicken bones with doublelayer hydroxide (Mg/Fe-LDH), Water, 12 (2020) 2303–2316.
  14. U. Hasanah, A. Iryani, A. Taufiq, D.A.D. Putra, Chicken bone based adsorbent for adsorption of Pb(II), Cd(II), and Hg(II) metals ion liquid waste, Helium: J. Appl. Chem., 1 (2021) 11–18.
  15. M. Ghiaci, N. Dorostkar, A. Gil, Chicken bone ash as an efficient metal biosorbent for cadmium, lead, nickel, and zinc from aqueous solutions, Desal. Water Treat., 52 (2014) 3115–3121.
  16. S. Mukherjee, S. Kumar, A.K. Misra, M. Fan, Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal, Chem. Eng. J., 129 (2007) 133–142.
  17. APHA, Standard Methods for the Examination of Water and Wastewater (23rd ed.), American Public Health Association, Washington D.C., 2017.
  18. H. Patel, Batch and continuous fixed-bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder, Sci. Rep., 10 (2020) 1–12.
  19. D. Juela, M. Vera, C. Cruzat, X. Alvarez, E. Vanegas, Mathematical modeling and numerical simulation of sulfamethoxazole adsorption onto sugarcane bagasse in a fixed-bed column, Chemosphere, 280 (2021) 130687, doi: 10.1016/j.chemosphere.2021.130687.
  20. M.C. Ncibi, B. Mahjoub, M. Seffen, Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres, J. Hazard. Mater., 139 (2007) 280–285.
  21. H.I. Abdel-Shafy, M.M. Hefny, H.M. Ahmed, F.M. Abdel- Haleem, Removal of cadmium, nickel, and zinc from aqueous solutions by activated carbon prepared from corncob - waste agricultural materials, Egypt. J. Chem., 55 (2022) 677–687.
  22. D.J. Tarimo, K.O. Oyedotun, N.F. Sylla, A.A. Mirghni, N.M. Ndiaye, N. Manyala, Waste chicken bone-derived porous carbon materials as high performance electrode for supercapacitor applications, J. Energy Storage, 51 (2022) 104378, doi: 10.1016/j.est.2022.104378.
  23. A.A. Ahmad, B.H. Hameed, A.L. Ahmad, Removal of disperse dye from aqueous solution using waste-derived activated carbon: optimization study, J. Hazard. Mater., 170 (2009) 612–619.
  24. E. Haluk, K. Yeliz, Ö. Orhan, Production of bone broth powder with spray drying using three different carrier agents, Korean J. Food Sci. Anim. Resour., 38 (2018) 1273–1285.
  25. R.H. Hesas, W.M.A.W. Daud, J.N. Sahu, A. Arami-Niya, The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review, J. Anal. Appl. Pyrolysis,100 (2013) 1–11.
  26. B. Alhussary, A.T. Ghada, T. Amer, Preparation and characterization of natural nano hydroxyapatite from eggshell and seashell and its effect on bone healing, J. Appl. Vet. Sci., 5 (2020) 25–32.
  27. Z. Lou, H. Huang, M. Li, T. Shang, C. Chen, Controlled synthesis of carbon nanoparticles in a supercritical carbon disulfide system, J. Mater., 7 (2013) 97–105.
  28. C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, P.Magri, Preparation and characterisation of activated carbon from animal bones and its application for removal of organic micropollutants from aqueous solution, Desal. Water Treat., 57 (2016) 25070–25079.
  29. F. Al-Tohami, M.A. Ackacha, R.A. Belaid, M. Hamaadi, Adsorption of Zn(II) ions from aqueous solutions by novel adsorbent: ngella sativa seeds, APCBEE Procedia, 5 (2013) 400–404.
  30. G.M. Al-Senani, F.F. Al-Fawzan, Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs, Egypt. J. Aquat. Res., 44 (2018) 187–194.
  31. M.A. El-Khateeb, M.A. Hussein, N.A. Sobhy, Recycling of waste chicken bones for greywater pollutants removal, Desal. Water Treat., 265 (2022) 124–133.
  32. K.H. Chu, Fitting the Gompertz equation to asymmetric breakthrough curves, J. Environ. Chem. Eng., 8 (2020) 103713, doi: 10.1016/j.jece.2020.103713.
  33. S.M. Anisuzzaman, C.G. Joseph, D. Krishnaiah, A. Bono, E. Suali, S. Abang, L.M. Fai, Removal of chlorinated phenol from aqueous media by guava seed (Psidium guajava) tailored activated carbon, Water Resour. Ind., 16 (2016) 29–36.
  34. M.E. Fawzy, N.M. Badr, S.I. Abou-Elela, Remediation and reuse of retting flax wastewater using activated sludge process followed by adsorption on activated carbon, Environ. Sci. Technol., 11 (2018) 167–74.
  35. M. Leili, J. Faradmal, F. Kosravian, M. Heydari, A comparison study on the removal of phenol from aqueous solution using organomodified bentonite and commercial activated carbon, Avicenna J. Environ. Health Eng., 2 (2015) 2698, doi: 10.17795/ajehe-2698.
  36. M.F. Abid, O.N. Abdulla, A.F. Kadhim, Study on removal of phenol from synthetic wastewater using solar photo catalytic reactor, J. King Saud Univ. Eng. Sci., 31 (2019) 131–139.
  37. A. Gładysz-Płaska, Application of modified clay for removal of phenol and PO43– ions from aqueous solutions, Adsorpt. Sci. Technol., 35 (2017) 692–699.
  38. M. Malakootian, H. Jafari Mansoorian, M. Alizadeh, A. Baghbanian, Phenol removal from aqueous solution by adsorption process: study of the nanoparticles performance prepared from Aloe vera and Mesquite (Prosopis) leaves, Sci. Iran., 24 (2017) 3041–3052.