References
- Y. Choi, M.-J. Choi, S.-H. Cha, Y.S. Kim, S. Cho, Y. Park, Catechincapped
gold nanoparticles: green synthesis, characterization,
and catalytic activity toward 4-nitrophenol reduction,
Nanoscale Res. Lett., 9 (2014) 103, doi: 10.1186/1556-276X-9-103.
- M.I. Din, R. Khalid, Z. Hussain, T. Hussain, A. Mujahid,
J. Najeeb, F. Izhar, Nanocatalytic assemblies for catalytic
reduction of nitrophenols: a critical review, Crit. Rev. Anal.
Chem., 50 (2020) 322–338.
- M. Ramalingam, V.K. Ponnusamy, S.N. Sangilimuthu,
Electrochemical determination of 4-nitrophenol in
environmental water samples using porous graphitic carbon
nitride-coated screen-printed electrode, Environ. Sci. Pollut.
Res., 27 (2020) 17481–17491.
- M. Liu, Z. Gao, Y. Yu, R. Su, R. Huang, W. Qi, Z. He, Molecularly
imprinted core-shell CdSe@SiO2/CDs as a ratiometric
fluorescent probe for 4-nitrophenol sensing, Nanoscale Res.
Lett., 13 (2018) 27, doi: 10.1186/s11671-018-2440-6.
- N. Belachew, R. Fekadu, A. Ayalew Abebe, RSM-BBD optimization
of fenton-like degradation of 4-nitrophenol using
magnetite impregnated kaolin, Air Soil Water Res., 13 (2020)
117862212093212, doi: 10.1177/1178622120932124.
- I. Ivančev-Tumbas, R. Hobby, B. Küchle, S. Panglisch, R. Gimbel,
p-Nitrophenol removal by combination of powdered activated
carbon adsorption and ultrafiltration – comparison of
different operational modes, Water Res., 42 (2008) 4117–4124.
- S.Y. Rodriguez, M.E. Cantú, B. Garcia-Reyes, M.T. Garza-Gonzalez, E.R. Meza-Escalante, D. Serrano, L.H. Alvarez,
Biotransformation of 4-nitrophenol by co-immobilized
Geobacter sulfurreducens and
anthraquinone-2-sulfonate in
barium alginate beads, Chemosphere, 221 (2019) 219–225.
- A.A. Werkneh, S.B. Gebru, G.H. Redae, A.G. Tsige, Removal
of endocrine disrupters from the contaminated environment:
public health concerns, treatment strategies and future
perspectives – a review, Heliyon, 8 (2022) e09206.
- M.J. Whitcombe, N. Kirsch, I.A. Nicholls, Molecular imprinting
science and technology: a survey of the literature for the years
2004–2011, J. Mol. Recognit., 27 (2014) 297–401.
- D.-L. Huang, R.-Z. Wang, Y.-G. Liu, G.-M. Zeng, C. Lai,
P. Xu, B.-A. Lu, J.-J. Xu, C. Wang, C. Huang, Application of
molecularly imprinted polymers in wastewater treatment:
a review, Environ. Sci. Pollut. Res., 22 (2015) 963–977.
- T. Li, L. Fan, Y. Wang, X. Huang, J. Xu, J. Lu, M. Zhang, W. Xu,
Molecularly imprinted membrane electrospray ionization for
direct sample analyses, Anal. Chem., 89 (2017) 1453–1458.
- Y. Huang, Y. Xu, Q. He, B. Du, Y. Cao, Preparation and
characteristics of a dummy molecularly imprinted polymer for
phenol, J. Appl. Polym. Sci., 128 (2013) 3256–3262.
- A. Yigaimu, T. Muhammad, W. Yang, I. Muhammad,
M. Wubulikasimu, S.A. Piletsky, Magnetic molecularly
imprinted polymer particles based micro-solid phase
extraction for the determination of 4-nitrophenol in lake water,
Macromol. Res., 27 (2019) 1089–1094.
- L. Li, F. Zhu, Y. Lu, J. Guan, Synthesis, adsorption and selectivity
of inverse emulsion Cd(II) imprinted polymers, Chin. J. Chem.
Eng., 26 (2018) 494–500.
- W. Zhang, Q. Li, J. Cong, B. Wei, S. Wang, Mechanism analysis
of selective adsorption and specific recognition by molecularly
imprinted polymers of ginsenoside Re, Polymers, 10 (2018) 216,
doi: 10.3390/polym10020216.
- F. Zhu, Y. Lu, T. Ren, S. He, Y. Gao, Synthesis of ureidofunctionalized
Cr(VI) imprinted polymer: adsorption kinetics
and thermodynamics studies, Desal. Water Treat., 100 (2017)
126–134.
- C. Dong, H. Shi, Y. Han, Y. Yang, R. Wang, J. Men,
Molecularly imprinted polymers by the surface imprinting
technique, Eur. Polym. J., 145 (2021) 110231, doi: 10.1016/j.eurpolymj.2020.110231.
- M.P. Di Bello, L. Mergola, S. Scorrano, R. Del Sole, Towards
a new strategy of a chitosan-based molecularly imprinted
membrane for removal of 4-nitrophenol in real water
samples: chitosan-based molecularly imprinted membranes,
Polym. Int., 66 (2017) 1055–1063.
- F.-Q. An, H.-F. Li, X.-D. Guo, T.-P. Hu, B.-J. Gao, J.-F. Gao,
Design of novel “imprinting synchronized with crosslinking”
surface imprinted technique and its application for selectively
removing phenols from aqueous solution, Eur. Polym. J.,
112 (2019) 273–282.
- W. Liang, Y. Lu, N. Li, H. Li, F. Zhu, Microwave-assisted
synthesis of magnetic surface molecular imprinted polymer
for adsorption and solid phase extraction of 4-nitrophenol in
wastewater, Microchem. J., 159 (2020) 105316, doi: 10.1016/j.microc.2020.105316.
- Y. Li, H.-H. Yang, Q.-H. You, Z.-X. Zhuang, X.-R. Wang,
Protein recognition via surface molecularly imprinted polymer
nanowires, Anal. Chem., 78 (2006) 317–320.
- C.A. Mourão, F. Bokeloh, J. Xu, E. Prost, L. Duma, F. Merlier,
S.M.A. Bueno, K. Haupt, B. Tse Sum Bui,
Dual-oriented solidphase
molecular imprinting: toward selective artificial receptors
for recognition of nucleotides in water, Macromolecules,
50 (2017) 7484–7490.
- K. Phonklam, R. Wannapob, W. Sriwimol, P. Thavarungkul,
T. Phairatana, A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin
T detection, Sens. Actuators, B, 308 (2020) 127630, doi: 10.1016/j.snb.2019.127630.
- A. Mehdinia, S. Dadkhah, T. Baradaran Kayyal, A. Jabbari,
Design of a surface-immobilized 4-nitrophenol molecularly
imprinted polymer via pre-grafting amino functional materials
on magnetic nanoparticles, J. Chromatogr. A, 1364 (2014) 12–19.
- L. Wang, K. Zhi, Y. Zhang, Y. Liu, L. Zhang, A. Yasin, Q. Lin,
Molecularly imprinted polymers for gossypol via sol–gel, bulk,
and surface layer imprinting—a comparative study, Polymers,
11 (2019) 602, doi: 10.3390/polym11040602.
- M.M. Moein, A. Abdel-Rehim, M. Abdel-Rehim, Recent
applications of molecularly imprinted sol–gel methodology in
sample preparation, Molecules, 24 (2019) 2889, doi: 10.3390/molecules24162889.
- L. Guo, X. Ma, X. Xie, R. Huang, M. Zhang, J. Li, G. Zeng, Y. Fan,
Preparation of dual-dummy-template molecularly imprinted
polymers coated magnetic graphene oxide for separation
and enrichment of phthalate esters in water, Chem. Eng. J.,
361 (2019) 245–255.
- T. Hao, X. Wei, Y. Nie, Y. Xu, Y. Yan, Z. Zhou, An eco-friendly
molecularly imprinted fluorescence composite material based
on carbon dots for fluorescent detection of 4-nitrophenol,
Microchim. Acta, 183 (2016) 2197–2203.
- S. Raof, S. Mohamad, M. Abas, Synthesis and evaluation of
molecularly imprinted silica gel for 2-hydroxybenzoic acid in
aqueous solution, Int. J. Mol. Sci., 14 (2013) 5952–5965.
- G. Xue, L. Ding, Y. Gao, M. Zhong, Preparation and properties
characterization of 4-nitrophenol imprinted materials by surface
imprinting coupled with sol–gel method, Chin. J. Process Eng.,
20 (2020) 440–448 (in Chinese).
- G. Xie, R. Li, Y. Han, Y. Zhu, G. Wu, M. Qin, Optimization
of the extraction conditions for Buddleja officinalis maxim.
Using response surface methodology and exploration of the
optimum harvest time, Molecules, 22 (2017) 1877, doi: 10.3390/molecules22111877.
- A. Azari, M. Yeganeh, M. Gholami, M. Salari, The superior
adsorption capacity of 2,4-dinitrophenol under ultrasoundassisted
magnetic adsorption system: modeling and process
optimization by central composite design, J. Hazard. Mater.,
418 (2021) 126348, doi: 10.1016/j.jhazmat.2021.126348.
- M.Y. Badi, A. Esrafili, H. Pasalari, R.R. Kalantary, E. Ahmadi,
M. Gholami, A. Azari, Degradation of dimethyl phthalate
using persulfate activated by UV and ferrous ions: optimizing
operational parameters mechanism and pathway, J. Environ.
Health Sci. Eng., 17 (2019) 685–700.
- V. Alimohammadi, M. Sedighi, E. Jabbari, Optimization
of sulfate removal from wastewater using magnetic multiwalled
carbon nanotubes by response surface methodology,
Water Sci. Technol., 76 (2017) 2593–2602.
- A.S. Abdulhameed, A.-T. Mohammad, A.H. Jawad, Application
of response surface methodology for enhanced synthesis of
chitosan tripolyphosphate/TiO2 nanocomposite and adsorption
of reactive orange 16 dye, J. Cleaner Prod., 232 (2019) 43–56.
- A. Poudel, M.A. Fernandez, S.A.M. Tofail, M.J.P. Biggs, Boron
nitride nanotube addition enhances the crystallinity and
cytocompatibility of PVDF-TrFE, Front. Chem., 7 (2019) 364,
doi: 10.3389/fchem.2019.00364.
- J. Pan, X. Zou, X. Wang, W. Guan, Y. Yan, J. Han, Selective
recognition of 2,4-dichlorophenol from aqueous solution
by uniformly sized molecularly imprinted microspheres
with β-cyclodextrin/attapulgite composites as support,
Chem. Eng. J., 162 (2010) 910–918.
- F.S. Moosavi, T. Tavakoli, Amoxicillin degradation from
contaminated water by solar photocatalysis using response
surface methodology (RSM), Environ. Sci. Pollut. Res., 23 (2016)
23262–23270.
- Y. Zhang, Z. Tian, Q. Jing, Y. Chen, X. Huang, Removal of
Cr(VI) by modified diatomite supported NZVI from aqueous
solution: evaluating the effects of removal factors by RSM and
understanding the effects of pH, Water Sci. Technol., 80 (2019)
308–316.
- X. Zhang, X. Lu, S. Li, M. Zhong, X. Shi, G. Luo, L. Ding,
Investigation of 2,4-dichlorophenoxyacetic acid adsorption
onto MIEX resin: optimization using response surface
methodology, J. Taiwan Inst. Chem. Eng., 45 (2014) 1835–1841.
- M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni,
A. Taitai, Use of response surface methodology for optimization
of fluoride adsorption in an aqueous solution by brushite,
Arabian J. Chem., 10 (2017) S3292–S3302.
- N. Jadbabaei, R.J. Slobodjian, D. Shuai, H. Zhang, Catalytic
reduction of 4-nitrophenol by palladium-resin composites,
Appl. Catal., A, 543 (2017) 209–217.
- M. Dogan, F. Temel, M. Tabakci, High-performance adsorption
of 4-nitrophenol onto calix
- arene-tethered silica from aqueous
solutions, J. Inorg. Organomet. Polym. Mater., 30 (2020)
4191–4202.
- D. Lang, M. Shi, X. Xu, S. He, C. Yang, L. Wang, R. Wu, W. Wang,
J. Wang, DMAEMA-grafted cellulose as an imprinted adsorbent
for the selective adsorption of 4-nitrophenol, Cellulose,
28 (2021) 6481–6498.
- R. Say, A. Ersöz, İ. Şener, A. Atılır, S. Diltemiz, A. Denizli,
Comparison of adsorption and selectivity characteristics
for 4‐nitrophenol imprinted polymers prepared via bulk
and suspension polymerization, Sep. Sci. Technol., 39 (2005)
3471–3484.
- A.I. Ismail, Thermodynamic and kinetic properties of the
adsorption of 4-nitrophenol on graphene from aqueous
solution, Can. J. Chem., 93 (2015) 1083–1087.
- J. Chen, X. Sun, L. Lin, X. Dong, Y. He, Adsorption removal of
o-nitrophenol and p-nitrophenol from wastewater by metal–
organic framework Cr-BDC, Chin. J. Chem. Eng., 25 (2017)
775–781.
- S. Álvarez-Torrellas, M. Martin-Martinez, H.T. Gomes,
G. Ovejero, J. García, Enhancement of p-nitrophenol adsorption
capacity through N2-thermal-based treatment of activated
carbons, Appl. Surf. Sci., 414 (2017) 424–434.
- T. Narkkun, P. Boonying, C. Yuenyao, S. Amnuaypanich,
Green synthesis of porous polyvinyl alcohol membranes
functionalized with l-arginine and their application in the
removal of 4-nitrophenol from aqueous solution, J. Appl.
Polym. Sci., 136 (2019) 47835, doi: 10.1002/app.47835.
- H. Miao, S. Song, H. Chen, W. Zhang, R. Han, G. Yang,
Adsorption study of p-nitrophenol on a silver(I) triazolate
MOF, J. Porous Mater., 27 (2020) 1409–1417.