References

  1. Y. Choi, M.-J. Choi, S.-H. Cha, Y.S. Kim, S. Cho, Y. Park, Catechincapped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction, Nanoscale Res. Lett., 9 (2014) 103, doi: 10.1186/1556-276X-9-103.
  2. M.I. Din, R. Khalid, Z. Hussain, T. Hussain, A. Mujahid, J. Najeeb, F. Izhar, Nanocatalytic assemblies for catalytic reduction of nitrophenols: a critical review, Crit. Rev. Anal. Chem., 50 (2020) 322–338.
  3. M. Ramalingam, V.K. Ponnusamy, S.N. Sangilimuthu, Electrochemical determination of 4-nitrophenol in environmental water samples using porous graphitic carbon nitride-coated screen-printed electrode, Environ. Sci. Pollut. Res., 27 (2020) 17481–17491.
  4. M. Liu, Z. Gao, Y. Yu, R. Su, R. Huang, W. Qi, Z. He, Molecularly imprinted core-shell CdSe@SiO2/CDs as a ratiometric fluorescent probe for 4-nitrophenol sensing, Nanoscale Res. Lett., 13 (2018) 27, doi: 10.1186/s11671-018-2440-6.
  5. N. Belachew, R. Fekadu, A. Ayalew Abebe, RSM-BBD optimization of fenton-like degradation of 4-nitrophenol using magnetite impregnated kaolin, Air Soil Water Res., 13 (2020) 117862212093212, doi: 10.1177/1178622120932124.
  6. I. Ivančev-Tumbas, R. Hobby, B. Küchle, S. Panglisch, R. Gimbel, p-Nitrophenol removal by combination of powdered activated carbon adsorption and ultrafiltration – comparison of different operational modes, Water Res., 42 (2008) 4117–4124.
  7. S.Y. Rodriguez, M.E. Cantú, B. Garcia-Reyes, M.T. Garza-Gonzalez, E.R. Meza-Escalante, D. Serrano, L.H. Alvarez, Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and
    anthraquinone-2-sulfonate in barium alginate beads, Chemosphere, 221 (2019) 219–225.
  8. A.A. Werkneh, S.B. Gebru, G.H. Redae, A.G. Tsige, Removal of endocrine disrupters from the contaminated environment: public health concerns, treatment strategies and future perspectives – a review, Heliyon, 8 (2022) e09206.
  9. M.J. Whitcombe, N. Kirsch, I.A. Nicholls, Molecular imprinting science and technology: a survey of the literature for the years 2004–2011, J. Mol. Recognit., 27 (2014) 297–401.
  10. D.-L. Huang, R.-Z. Wang, Y.-G. Liu, G.-M. Zeng, C. Lai, P. Xu, B.-A. Lu, J.-J. Xu, C. Wang, C. Huang, Application of molecularly imprinted polymers in wastewater treatment: a review, Environ. Sci. Pollut. Res., 22 (2015) 963–977.
  11. T. Li, L. Fan, Y. Wang, X. Huang, J. Xu, J. Lu, M. Zhang, W. Xu, Molecularly imprinted membrane electrospray ionization for direct sample analyses, Anal. Chem., 89 (2017) 1453–1458.
  12. Y. Huang, Y. Xu, Q. He, B. Du, Y. Cao, Preparation and characteristics of a dummy molecularly imprinted polymer for phenol, J. Appl. Polym. Sci., 128 (2013) 3256–3262.
  13. A. Yigaimu, T. Muhammad, W. Yang, I. Muhammad, M. Wubulikasimu, S.A. Piletsky, Magnetic molecularly imprinted polymer particles based micro-solid phase extraction for the determination of 4-nitrophenol in lake water, Macromol. Res., 27 (2019) 1089–1094.
  14. L. Li, F. Zhu, Y. Lu, J. Guan, Synthesis, adsorption and selectivity of inverse emulsion Cd(II) imprinted polymers, Chin. J. Chem. Eng., 26 (2018) 494–500.
  15. W. Zhang, Q. Li, J. Cong, B. Wei, S. Wang, Mechanism analysis of selective adsorption and specific recognition by molecularly imprinted polymers of ginsenoside Re, Polymers, 10 (2018) 216, doi: 10.3390/polym10020216.
  16. F. Zhu, Y. Lu, T. Ren, S. He, Y. Gao, Synthesis of ureidofunctionalized Cr(VI) imprinted polymer: adsorption kinetics and thermodynamics studies, Desal. Water Treat., 100 (2017) 126–134.
  17. C. Dong, H. Shi, Y. Han, Y. Yang, R. Wang, J. Men, Molecularly imprinted polymers by the surface imprinting technique, Eur. Polym. J., 145 (2021) 110231, doi: 10.1016/j.eurpolymj.2020.110231.
  18. M.P. Di Bello, L. Mergola, S. Scorrano, R. Del Sole, Towards a new strategy of a chitosan-based molecularly imprinted membrane for removal of 4-nitrophenol in real water samples: chitosan-based molecularly imprinted membranes, Polym. Int., 66 (2017) 1055–1063.
  19. F.-Q. An, H.-F. Li, X.-D. Guo, T.-P. Hu, B.-J. Gao, J.-F. Gao, Design of novel “imprinting synchronized with crosslinking” surface imprinted technique and its application for selectively removing phenols from aqueous solution, Eur. Polym. J., 112 (2019) 273–282.
  20. W. Liang, Y. Lu, N. Li, H. Li, F. Zhu, Microwave-assisted synthesis of magnetic surface molecular imprinted polymer for adsorption and solid phase extraction of 4-nitrophenol in wastewater, Microchem. J., 159 (2020) 105316, doi: 10.1016/j.microc.2020.105316.
  21. Y. Li, H.-H. Yang, Q.-H. You, Z.-X. Zhuang, X.-R. Wang, Protein recognition via surface molecularly imprinted polymer nanowires, Anal. Chem., 78 (2006) 317–320.
  22. C.A. Mourão, F. Bokeloh, J. Xu, E. Prost, L. Duma, F. Merlier, S.M.A. Bueno, K. Haupt, B. Tse Sum Bui,
    Dual-oriented solidphase molecular imprinting: toward selective artificial receptors for recognition of nucleotides in water, Macromolecules, 50 (2017) 7484–7490.
  23. K. Phonklam, R. Wannapob, W. Sriwimol, P. Thavarungkul, T. Phairatana, A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection, Sens. Actuators, B, 308 (2020) 127630, doi: 10.1016/j.snb.2019.127630.
  24. A. Mehdinia, S. Dadkhah, T. Baradaran Kayyal, A. Jabbari, Design of a surface-immobilized 4-nitrophenol molecularly imprinted polymer via pre-grafting amino functional materials on magnetic nanoparticles, J. Chromatogr. A, 1364 (2014) 12–19.
  25. L. Wang, K. Zhi, Y. Zhang, Y. Liu, L. Zhang, A. Yasin, Q. Lin, Molecularly imprinted polymers for gossypol via sol–gel, bulk, and surface layer imprinting—a comparative study, Polymers, 11 (2019) 602, doi: 10.3390/polym11040602.
  26. M.M. Moein, A. Abdel-Rehim, M. Abdel-Rehim, Recent applications of molecularly imprinted sol–gel methodology in sample preparation, Molecules, 24 (2019) 2889, doi: 10.3390/molecules24162889.
  27. L. Guo, X. Ma, X. Xie, R. Huang, M. Zhang, J. Li, G. Zeng, Y. Fan, Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water, Chem. Eng. J., 361 (2019) 245–255.
  28. T. Hao, X. Wei, Y. Nie, Y. Xu, Y. Yan, Z. Zhou, An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol, Microchim. Acta, 183 (2016) 2197–2203.
  29. S. Raof, S. Mohamad, M. Abas, Synthesis and evaluation of molecularly imprinted silica gel for 2-hydroxybenzoic acid in aqueous solution, Int. J. Mol. Sci., 14 (2013) 5952–5965.
  30. G. Xue, L. Ding, Y. Gao, M. Zhong, Preparation and properties characterization of 4-nitrophenol imprinted materials by surface imprinting coupled with sol–gel method, Chin. J. Process Eng., 20 (2020) 440–448 (in Chinese).
  31. G. Xie, R. Li, Y. Han, Y. Zhu, G. Wu, M. Qin, Optimization of the extraction conditions for Buddleja officinalis maxim. Using response surface methodology and exploration of the optimum harvest time, Molecules, 22 (2017) 1877, doi: 10.3390/molecules22111877.
  32. A. Azari, M. Yeganeh, M. Gholami, M. Salari, The superior adsorption capacity of 2,4-dinitrophenol under ultrasoundassisted magnetic adsorption system: modeling and process optimization by central composite design, J. Hazard. Mater., 418 (2021) 126348, doi: 10.1016/j.jhazmat.2021.126348.
  33. M.Y. Badi, A. Esrafili, H. Pasalari, R.R. Kalantary, E. Ahmadi, M. Gholami, A. Azari, Degradation of dimethyl phthalate using persulfate activated by UV and ferrous ions: optimizing operational parameters mechanism and pathway, J. Environ. Health Sci. Eng., 17 (2019) 685–700.
  34. V. Alimohammadi, M. Sedighi, E. Jabbari, Optimization of sulfate removal from wastewater using magnetic multiwalled carbon nanotubes by response surface methodology, Water Sci. Technol., 76 (2017) 2593–2602.
  35. A.S. Abdulhameed, A.-T. Mohammad, A.H. Jawad, Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye, J. Cleaner Prod., 232 (2019) 43–56.
  36. A. Poudel, M.A. Fernandez, S.A.M. Tofail, M.J.P. Biggs, Boron nitride nanotube addition enhances the crystallinity and cytocompatibility of PVDF-TrFE, Front. Chem., 7 (2019) 364, doi: 10.3389/fchem.2019.00364.
  37. J. Pan, X. Zou, X. Wang, W. Guan, Y. Yan, J. Han, Selective recognition of 2,4-dichlorophenol from aqueous solution by uniformly sized molecularly imprinted microspheres with β-cyclodextrin/attapulgite composites as support, Chem. Eng. J., 162 (2010) 910–918.
  38. F.S. Moosavi, T. Tavakoli, Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM), Environ. Sci. Pollut. Res., 23 (2016) 23262–23270.
  39. Y. Zhang, Z. Tian, Q. Jing, Y. Chen, X. Huang, Removal of Cr(VI) by modified diatomite supported NZVI from aqueous solution: evaluating the effects of removal factors by RSM and understanding the effects of pH, Water Sci. Technol., 80 (2019) 308–316.
  40. X. Zhang, X. Lu, S. Li, M. Zhong, X. Shi, G. Luo, L. Ding, Investigation of 2,4-dichlorophenoxyacetic acid adsorption onto MIEX resin: optimization using response surface methodology, J. Taiwan Inst. Chem. Eng., 45 (2014) 1835–1841.
  41. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, A. Taitai, Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by brushite, Arabian J. Chem., 10 (2017) S3292–S3302.
  42. N. Jadbabaei, R.J. Slobodjian, D. Shuai, H. Zhang, Catalytic reduction of 4-nitrophenol by palladium-resin composites, Appl. Catal., A, 543 (2017) 209–217.
  43. M. Dogan, F. Temel, M. Tabakci, High-performance adsorption of 4-nitrophenol onto calix
  44. arene-tethered silica from aqueous solutions, J. Inorg. Organomet. Polym. Mater., 30 (2020) 4191–4202.
  45. D. Lang, M. Shi, X. Xu, S. He, C. Yang, L. Wang, R. Wu, W. Wang, J. Wang, DMAEMA-grafted cellulose as an imprinted adsorbent for the selective adsorption of 4-nitrophenol, Cellulose, 28 (2021) 6481–6498.
  46. R. Say, A. Ersöz, İ. Şener, A. Atılır, S. Diltemiz, A. Denizli, Comparison of adsorption and selectivity characteristics for 4‐nitrophenol imprinted polymers prepared via bulk and suspension polymerization, Sep. Sci. Technol., 39 (2005) 3471–3484.
  47. A.I. Ismail, Thermodynamic and kinetic properties of the adsorption of 4-nitrophenol on graphene from aqueous solution, Can. J. Chem., 93 (2015) 1083–1087.
  48. J. Chen, X. Sun, L. Lin, X. Dong, Y. He, Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal– organic framework Cr-BDC, Chin. J. Chem. Eng., 25 (2017) 775–781.
  49. S. Álvarez-Torrellas, M. Martin-Martinez, H.T. Gomes, G. Ovejero, J. García, Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons, Appl. Surf. Sci., 414 (2017) 424–434.
  50. T. Narkkun, P. Boonying, C. Yuenyao, S. Amnuaypanich, Green synthesis of porous polyvinyl alcohol membranes functionalized with l-arginine and their application in the removal of 4-nitrophenol from aqueous solution, J. Appl. Polym. Sci., 136 (2019) 47835, doi: 10.1002/app.47835.
  51. H. Miao, S. Song, H. Chen, W. Zhang, R. Han, G. Yang, Adsorption study of p-nitrophenol on a silver(I) triazolate MOF, J. Porous Mater., 27 (2020) 1409–1417.