References
- K. Glińska-Lewczuk, I. Gołaś, J. Koc, A. Gotkowska-Płachta,
M. Harnisz, A. Rochwerger, The impact of urban areas on the
water quality gradient along a lowland river, Environ. Monit.
Assess., 188 (2016) 624, doi: 10.1007/s10661-016-5638-z.
- M.A. Mallin, V.L. Johnson, S.H. Ensign, Comparative impacts
of stormwater runoff on water quality of an urban, a suburban,
and a rural stream, Environ. Monit. Assess., 159 (2009) 475–491.
- S.E. Hobbie, J.C. Finlay, B.D. Janke, D.A. Nidzgorski, D.B. Millet,
L.A. Baker, Contrasting nitrogen and phosphorus budgets in
urban watersheds and implications for managing urban water
pollution, Proc. Natl. Acad. Sci., 114 (2017) 4177–4182.
- J. Pokrývková, L. Jurík, L. Lackóová, K. Halászová, R. Hanzlík,
M.E. Banihabib, The urban environment impact of climate
change study and proposal of the city micro-environment
improvement, Sustainability, 13 (2021) 4096, doi: 10.3390/su13084096.
- T. Correia, M. Regato, A. Almeida, T. Santos, L. Amaral, M. de
Fátima Nunes Carvalho, Manual treatment of urban wastewater
by chemical precipitation for production of hydroponic
nutrient solutions, J. Ecol. Eng., 21 (2020) 143–152.
- G.S. Toor, M.L. Occhipinti, Y.-Y. Yang, T. Majcherek, D. Haver,
L. Oki, Managing urban runoff in residential neighborhoods:
nitrogen and phosphorus in lawn irrigation driven runoff,
PLoS One, 12 (2017) e0179151, doi: 10.1371/journal.
pone.0179151.
- Y.-Y. Yang, G.S. Toor, Sources and mechanisms of nitrate and
orthophosphate transport in urban stormwater runoff from
residential catchments, Water Res., 112 (2017) 176–184.
- Y.-Y. Yang, G.S. Toor, Stormwater runoff driven phosphorus
transport in an urban residential catchment: implications
for protecting water quality in urban watersheds, Sci. Rep.,
8 (2018) 11681, doi: 10.1038/s41598-018-29857-x.
- E. Eriksson, A. Baun, L. Scholes, A. Ledin, S. Ahlman, M. Revitt,
C. Noutsopoulos, P.S. Mikkelsen, Selected stormwater priority
pollutants — a European perspective, Sci. Total Environ.,
383 (2007) 41–51.
- Council Directive of 21 May 1991 Concerning Urban Wastewater
Treatment (91/271/EEC). Available at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271&from=
EN (31.05.2022).
- EU, Towards an EU Research and Innovation Policy Agenda
for Nature-Based Solutions and Re-Naturing Cities, European
Commission. Available at https://op.europa.eu/en/publicationdetail/-/
publication/fb117980-d5aa-46df-8edc-af367cddc202
(15.02.2022).
- Building Community Resilience With Nature-Based Solutions,
A Guide for Local Communities, FEMA June 2021. Available
at https://www.fema.gov/sites/default/files/documents/fema_riskmap-nature-based-solutions-guide_2021.pdf (18.02.2022).
- J. Vymazal, Constructed wetlands for wastewater treatment,
Water, 2 (2010) 530–549.
- N. Atanasova, J.A.C. Castellar, R. Pineda-Martos, C.E. Nika,
E. Katsou, D. Istenič, B. Pucher, M.B. Andreucci, G. Langergraber,
Nature-based solutions and circularity in cities, Circ.
Econ. Sustainability, 1 (2021) 319–332.
- N. Frantzeskaki, Seven lessons for planning nature-based
solutions in cities, Environ. Sci. Policy, 93 (2019) 101–111.
- H. Bacelo, A.M.A. Pintor, S.C.R. Santos, R.A.R. Boaventura,
C.M.S. Botelho, Performance and prospects of different
adsorbents for phosphorus uptake and recovery from water,
Chem. Eng. J., 381 (2020) 122566, doi: 10.1016/j.cej.2019.122566.
- A. Gizaw, F. Zewge, A. Kumar, A. Mekonnen, M. Tesfaye,
A comprehensive review on nitrate and phosphate removal
and recovery from aqueous solutions by adsorption, J. Water
Supply Res. Technol. AQUA, 70 (2021) 921–947.
- A. Bus, A. Karczmarczyka, A. Baryła, Phosphorus reactive
materials for permeable reactive barrier filling – lifespan
estimations, Desal. Water Treat., 245 (2022) 9–15.
- J.X. Lin, L. Wang, Comparison between linear and nonlinear
forms of pseudo-first-order and pseudo-second-order
adsorption kinetic models for the removal of methylene blue by
activated carbon, Front. Environ. Sci. Eng., 3 (2009) 320–324.
- Y.S. Ho, D. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- A.M. Peers, Elovich adsorption kinetics and the heterogeneous
surface, J. Catal., 4 (1965) 499–503.
- V. Vadivelan, K. Vasanth Kumar, Equilibrium, kinetics,
mechanism, and process design for the sorption of methylene
blue onto rice husk, J. Colloid Interface Sci., 286 (2005)
90–100.
- L. Zhang, J.Y. Liu, L.H. Wan, Q. Zhou, X.Z. Wang, Batch and
fixed-bed column performance of phosphate adsorption by
lanthanum-doped activated carbon fiber, Water Air Soil Pollut.,
223 (2012) 5893–5902.
- Y. Xu, T.J. Liu, Y.K. Huang, J.Y. Zhu, R.L. Zhu, Role of phosphate
concentration in control for phosphate removal and recovery by
layered double hydroxides, Environ. Sci. Pollut. Res., 27 (2020)
16612–16623.
- G.W. Kajjumba, S. Emik, A. Öngen, H. Kurtulus Özcan,
S. Aydın, Modelling of Adsorption Kinetic Processes—Errors,
Theory and Application, S. Edebali, Ed., Advanced Sorption
Process Applications, InTechOpen, 2018, doi: 10.5772/intechopen.80495.
- Y.S. Ho, G. McKay, A comparison of chemisorption kinetic
models applied to pollutant removal on various sorbents,
Process Saf. Environ. Prot., 76 (1998) 332–340.
- H.J. Wang, A.L. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study
on adsorption of acidified multi-walled carbon nanotubes to
Pb(II), J. Colloid Interface Sci., 316 (2007) 277–283.
- H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao,
Mistakes and inconsistencies regarding adsorption of
contaminants from aqueous solutions: a critical review, Water
Res., 120 (2017) 88–116.
- J.-P. Simonin, On the comparison of pseudo-first-order and
pseudo-second-order rate laws in the modeling of adsorption
kinetics, Chem. Eng. J., 300 (2016) 254–263.
- E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez,
M.E. Zappi, Adsorption kinetic modeling using pseudo-firstorder
and pseudo-second-order rate laws: a review, Cleaner
Eng. Technol., 1 (2020) 100032, doi: 10.1016/j.clet.2020.100032.
- A. Bus, A. Karczmarczyk, Supporting constructed wetlands in
P removal efficiency from surface water, Water Sci. Technol.,
75 (2017) 2554–2561.
- L.H. Wang, C. Penn, C.-h. Huang, S. Livingston, J.H. Yan, Using
steel slag for dissolved phosphorus removal: insights from
a designed flow-through laboratory experimental structure,
Water, 12 (2020) 1236, doi: 10.3390/w12051236.
- E. Nowobilska-Majewska, P. Bugajski, The impact of selected
parameters on the condition of activated sludge in a biologic
reactor in the treatment plant in Nowy Targ, Poland, Water,
12 (2020) 2657, doi: 10.3390/w12102657.
- A. Karczmarczyk, A. Bus, A. Baryła, Influence of operation time,
hydraulic load and drying on phosphate retention capacity
of mineral filters treating natural swimming pool water, Ecol.
Eng., 130 (2019) 176–183.
- A. Bańkowska-Sobczak, Calcite as a candidate for non-invasive
phosphorus removal from lakes, Ecohydrol. Hydrobiol.,
21 (2021) 683–699.
- A. Baryła, A. Karczmarczyk, A. Brandyk, A. Bus, The influence
of a green roof drainage layer on retention capacity and leakage
quality, Water Sci. Technol., 77 (2018) 2886–2895.
- M.E. Dietz, J.C. Clausen, Saturation to improve pollutant
retention in a rain garden, Environ. Sci. Technol., 40 (2006)
1335–1340.
- M. Eadie, Water Sensitive Urban Design for the Coastal
Dry Tropics (Townsville): Design Objectives for Stormwater
Management, Townsville City Council, 2011. Available at
https://www.townsville.qld.gov.au/__data/assets/pdf_file/
0007/12220/Design_Objectives_For_Stormwater_Management.
pdf (16.02.2022).
- C. Berretta, A. Aiello, H.S. Jensen, M.R. Tillotson, A. Boxall,
V. Stovin, Influence of Design and Media Amendments on
the Performance of Stormwater Biofilters, Proceedings of the
Institution of Civil Engineers-Water Management, Thomas
Telford Ltd., 2018, pp. 87–98.