References
- T. Dokmaj, T. Ibrahim, M. Khamis, M. Abouleish, I. Alam,
Chemically modified nanoparticles usage for removal of
chromium from sewer water, Environ. Nanotechnol. Monit.
Manage., 14 (2020) 100319, doi: 10.1016/j.enmm.2020.100319.
- S. Pap, V. Bezanovic, J. Radonic, A. Babic, S. Saric, D. Adamovic,
M.T. Sekulic, Synthesis of highly-efficient functionalized
biochars from fruit industry waste biomass for the removal of
chromium and lead, J. Mol. Liq., 268 (2018) 315–325.
- S.K. Sharma, B. Petrusevski, G. Amy, Chromium removal from
water: a review, J. Water Supply Res. Technol. AQUA, 57 (2008)
541–553.
- H. Borji, G.M. Ayoub, R. Bilbeisi, N. Nassar, L. Malaeb, How
effective are nanomaterials for the removal of heavy metals
from water and wastewater?, Water Air Soil Pollut., 231 (2020)
330.
- Y. Yu, Q. An, L. Jin, N. Luo, Z. Li, J. Jiang, Unraveling sorption
of Cr(VI) from aqueous solution by FeCl3 and ZnCl2-modified
corn stalks biochar: implicit mechanism and application,
Bioresour. Technol., 297 (2020) 122466, doi: 10.1016/j.biortech.2019.122466.
- M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal
of hexavalent chromium-contaminated water and wastewater:
a review, Water Air Soil Pollut., 200 (2009) 59–77.
- M.I. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa,
P. Pullammanappallil, Y.S. Ok, X. Cao, A review of biochar as a
low-cost adsorbent for aqueous heavy metal removal, Crit. Rev.
Env. Sci. Technol., 46 (2016) 406–433.
- S. Elkhalifa, T. Al-Ansari, H.R. Mackey, G. McKay, Food waste to
biochars through pyrolysis: a review, Resour. Conserv. Recycl.,
144 (2019) 310–320.
- M. Waqas, A.S. Nizami, A.S. Aburiazaiza, M.A. Barakat,
I.M.I. Ismail, M.I. Rashid, Optimization of food waste compost
with the use of biochar, J. Environ. Manage., 216 (2018) 70–81.
- S. Mukherjee, A.K. Thakur, R. Goswami, P. Mazumder, K. Taki,
M. Vithanage, M. Kumar, Efficacy of agricultural waste derived
biochar for arsenic removal: tackling water quality in the
Indo-Gangetic plain, J. Environ. Manage., 281 (2021) 111814,
doi: 10.1016/j.jenvman.2020.111814.
- Q. Jin, Z. Wang, Y. Feng, Y.-T. Kim, A.C. Stewart, S.F. O’Keefe,
A.P. Neilson, Z. He, H. Huang, Grape pomace and its secondary
waste management: biochar production for a broad range of
lead (Pb) removal from water, Environ. Res., 186 (2020) 109442,
doi: 10.1016/j.envres.2020.109442.
- J. Zhang, X. Hu, J. Yan, L. Long, Y. Xue, Crayfish shell biochar
modified with magnesium chloride and its effect on lead
removal in aqueous solution, Environ. Sci. Pollut. Res., 27 (2020)
9582–9588.
- D. Mohan, S. Rajput, V. Singh, P.H. Steele, C.U. Pittman Jr.,
Modeling and evaluation of chromium remediation from water
using low cost bio-char, a green adsorbent, J. Hazard. Mater.,
188 (2011) 319–333.
- E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, Biochar
production by sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis,
101 (2013) 72–78.
- U. Khalil, M.B. Shakoor, S. Ali, M. Rizwan, M N. Alyemeni,
L. Wijaya, Adsorption-reduction performance of tea waste and
rice husk biochars for Cr(VI) elimination from wastewater,
J. Saudi Chem. Soc., 24 (2020) 799–810.
- Y. Zhang, N. Liu, Y. Yang, J. Li, S. Wang, J. Lv, R. Tang, Novel
carbothermal synthesis of Fe, N co-doped oak wood biochar
(Fe/N-OB) for fast and effective Cr(VI) removal, Colloids Surf.,
A, 600 (2020) 124926, doi: 10.1016/j.colsurfa.2020.124926.
- L. Liu, X. Liu, D. Wang, H. Lin, L. Huang, Removal and
reduction of Cr(VI) in simulated wastewater using magnetic
biochar prepared by co-pyrolysis of nano-zero-valent iron
and sewage sludge, J. Cleaner Prod., 257 (2020) 120562,
doi: 10.1016/j.jclepro.2020.120562.
- J. Bu, W. Li, N. Niu, N. Guo, H. Zhou, C. Chen, A. Ding,
Adsorption of Cr(VI) from wastewater by iron-modified
coconut shell biochar, E3S Web Conf., 248 (2021) 01059,
doi: 10.1051/e3sconf/202124801059.
- X.-J. Liu, M.-F. Li, S.K. Singh, Manganese-modified lignin
biochar as adsorbent for removal of methylene blue, J. Mater.
Res. Technol., 12 (2021) 1434–1445.
- J.Y. Qi, S. Sato, Magnesium-modified biochars for nitrate
adsorption and removal in continuous flow system,
Bull. Plankton Eco-Eng. Res., 1 (2021) 32–46.
- L.-L. Ling, W.-J. Liu, S. Zhang, H. Jiang, Magnesium oxide
embedded nitrogen self-doped biochar composites: fast and
high-efficiency adsorption of heavy metals in an aqueous
solution, Environ. Sci. Technol., 51 (2017) 10081–10089.
- H. Wang, J. Dai, H. Chen, F. Wang, Y. Zhu, J. Liu, B. Zhou,
R. Yuan, Adsorption of phosphate by Mg/Fe-doped wheat
straw biochars optimized using response surface methodology:
mechanisms and application in domestic sewage, Environ. Eng.
Res., 28 (2023) 210602, doi: 10.4491/eer.2021.602.
- Q. Zheng, L. Yang, D. Song, S. Zhang, H. Wu, S. Li, X. Wang,
High adsorption capacity of Mg–Al-modified biochar for
phosphate and its potential for phosphate interception
in soil, Chemosphere, 259 (2020) 127469, doi: 10.1016/j.chemosphere.2020.127469.
- P. Maneechakr, S. Mongkollertlop, Investigation on adsorption
behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through
low-cost/active manganese dioxide-modified magnetic biochar
derived from palm kernel cake residue, J. Environ. Chem. Eng.,
8 (2020) 104467, doi: 10.1016/j.jece.2020.104467.
- M. Yi, Y. Chen, Enhanced phosphate adsorption on Ca-Mg-loaded
biochar derived from tobacco stems, Water Sci. Technol.,
78 (2018) 2427–2436.
- T. Liao, T. Li, X. Su, X. Yu, H. Song, Y. Zhu, Y. Zhang, La(OH)3-modified magnetic pineapple biochar as novel adsorbents for
efficient phosphate removal, Bioresour. Technol., 263 (2018)
207–213.
- Q. He, Y. Luo, Y. Feng, K. Xie, K. Zhang, S. Shen, Y. Luo,
F. Wang, Biochar produced from tobacco stalks, eggshells,
and Mg for phosphate adsorption from a wide range of pH
aqueous solutions, Mater. Res. Express, 7 (2020) 115603,
doi: 10.1088/2053-1591/abcb3d.
- Magnesium (Mg) and Water, 2022. Available at https://www.lenntech.com/periodic/water/magnesium/magnesium-andwater.htm [Accessed 9/3/2022].
- Magnesium, 2022. Available at https://www.canada.ca › watermagnesium-
eau-eng [Accessed 9/3/2022].
- C. Fang, T. Zhang, P. Li, R.-F. Jiang, Y.-C. Wang, Application
of magnesium modified corn biochar for phosphorus removal
and recovery from swine wastewater, Int. J. Environ. Res.
Public Health, 11 (2014) 9217–9237.
- N. Ballav, H.J. Choi, S.B. Mishra, A. Maity, Synthesis,
characterization of Fe3O4@glycine doped polypyrrole magnetic
nanocomposites and their potential performance to remove
toxic Cr(VI), J. Ind. Eng., 20 (2014) 4085–4093.
- P. Wang, I.M.C. Lo, Synthesis of mesoporous magnetic γ-Fe2O3
and its application to Cr(VI) removal from contaminated water,
Water Res., 43 (2009) 3727–3734.
- Y. Liu, Z. He, M. Uchimiya, Comparison of biochar formation
from various agricultural by-products using FTIR spectroscopy,
Mod. Appl. Sci., 9 (2015) 246–253.
- A. Li, H. Deng, Y. Jiang, C. Ye, B. Yu, X. Zhou, A. Ma, Superefficient
removal of heavy metals from wastewater by
Mg-loaded biochars: adsorption characteristics and removal
mechanism, Langmuir, 36 (2020) 9160–9174.
- A.M. Dehkhoda, N. Ellis, E. Gyenge, Electrosorption on activated
biochar: effect of thermo-chemical activation treatment
on the electric double layer capacitance, J. Appl. Electrochem.,
44 (2014) 141–157.
- Y. Liu, X. Zhao, J. Li, D. Ma, R. Han, Characterization of biochar
from pyrolysis of wheat straw and its evaluation on
methylene blue adsorption, Desal. Water Treat., 46 (2012)
115–123.
- Y. Deng, X. Li, F. Ni, Q. Liu, Y. Yang, M. Wang, T. Ao, W. Chen,
Synthesis of magnesium modified biochar for removing
copper, lead and cadmium in single and binary systems from
aqueous solutions: adsorption mechanism, Water, 13 (2021) 599,
doi: 10.3390/w13050599.
- L. Ge, W. Wang, Z. Peng, F. Tan, X. Wang, J. Chen, X. Qiao, Facile
fabrication of Fe@MgO magnetic nanocomposites for efficient
removal of heavy metal ion and dye from water, Powder
Technol., 326 (2018) 393–401.
- Y. Chen, T. Zhou, H. Fang, S. Li, Y. Yao, Y. He, A novel
preparation of nano-sized hexagonal Mg(OH)2, Procedia Eng.,
102 (2015) 388–394.
- K.M. Saoud, S. Saeed, R.M. Al-Soubaihi, M.F. Bertino,
Microwave assisted preparation of magnesium hydroxide
nano-sheets, Am. J. Nanomater., 2 (2014) 21–25.
- M. Saffari, Response surface methodological approach for
optimizing the removal of cadmium from aqueous solutions
using pistachio residues biochar supported/non-supported by
nanoscale zero-valent iron, Main Group Met. Chem., 41 (2018)
167–181.
- C. Yu, H. Wang, M. Lu, F. Zhu, Y. Yang, H. Huang, C. Zou,
J. Xiong, Z. Zhong, Application of rice straw, corn cob, and
lotus leaf as agricultural waste derived catalysts for low
temperature SCR process: optimization of preparation process,
catalytic activity and characterization, Aerosol Air Qual. Res.,
20 (2020) 862–876.
- M. Zhang, B. Gao, Y. Yao, Y. Xue, M. Inyang, Synthesis of porous
MgO-biochar nanocomposites for removal of phosphate and
nitrate from aqueous solutions, Chem. Eng. J., 210 (2012) 26–32.
- G. Leofanta, M. Padovan, G. Tozzola, B. Venturelli, Surface area
and pore texture of catalysts, Catal. Today, 41 (1998) 207–219.
- K. Ahalya, N. Suriyanarayanan, V. Ranjithkumar, Effect of
cobalt substitution on structural and magnetic properties and
chromium adsorption of manganese ferrite nano particles,
J. Magn. Magn. Mater., 372 (2014) 208–213.
- S. Chen, Q. Yue, B. Gao, X. Xu, Equilibrium and kinetic
adsorption study of the adsorptive removal of Cr(VI) using
modified wheat residue, J. Colloid Interface Sci., 349 (2010)
256–264.
- N. Mehrabi, M. Soleimani, M. Madadi Yeganeh, H. Sharififard,
Parameters optimization for nitrate removal from water using
activated carbon and composite of activated carbon and Fe2O3
nanoparticles, RSC Adv., 5 (2015) 51470–51482.
- J. Katenta, C. Nakiguli, P. Mukasa, E. Ntambi, Removal of
chromium(VI) from tannery effluent using bio-char of Phoenix
reclinata seeds, Green Sustainable Chem., 10 (2020) 91–107.
- F. Gorzin, M.M. Bahri Rasht Abadi, Adsorption of Cr(VI) from
aqueous solution by adsorbent prepared from paper mill
sludge: kinetics and thermodynamics studies, Adsorpt. Sci.
Technol., 36 (2018) 149–169.
- D. Zhang, Y. Ma, H. Feng, Y. Hao, Adsorption of Cr(VI)
from aqueous solution using carbon-microsilica composite
adsorbent, J. Chil. Chem. Soc., 57 (2012) 964–968.
- Y. Wang, Q. Yang, J. Chen, J. Yang, Y. Zhang, Y. Chen, X. Li,
W. Du, A. Liang, S.-H. Ho, J.-S. Chang, Adsorption behavior of
Cr(VI) by magnetically modified Enteromorpha prolifera based
biochar and the toxicity analysis, J. Hazard. Mater., 395 (2020)
122658, doi: 10.1016/j.jhazmat.2020.122658.
- E.C. Nnadozie, P. Ajibade, Adsorption, kinetic and mechanistic
studies of Pb(II) and Cr(VI) ions using APTES functionalized
magnetic biochar, Microporous Mesoporous Mater., 309 (2020)
110573, doi: 10.1016/j.micromeso.2020.110573.
- Y. Huang, B. Wang, J. Lv, Y. He, H.H. Zhang, W. Li, Y. Li,
T. Wågberg, G. Hu, Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high
adsorption capacity for Cr(VI) removal from water, J. Hazard.
Mater., 436 (2020) 129270, doi: 10.1016/j.jhazmat.2022.129270.
- B. Ren, Y. Jin, L. Zhao, C. Cui, X. Song, Enhanced Cr(VI)
adsorption using chemically modified dormant Aspergillus
niger spores: process and mechanisms, J. Environ. Chem. Eng.
10 (2022) 106955, doi: 10.1016/j.jece.2021.106955.
- J. Begum, Z. Hussian, T. Noor, Adsorption and kinetic study of
Cr(VI) on ZIF-8 based composites, Mater. Res. Express, 7 (2020)
015083, doi: 10.1088/2053-1591/ab6b66.
- D.R. Vaddi, T.R. Gurugubelli, R. Koutavarapu, D.-Y. Lee, J. Shim,
Bio-stimulated adsorption of Cr(VI) from aqueous solution by
groundnut shell activated Carbon@Al embedded material,
Catalysts, 12 (2022) 290, doi: 10.3390/catal12030290.