References

  1. T. Dokmaj, T. Ibrahim, M. Khamis, M. Abouleish, I. Alam, Chemically modified nanoparticles usage for removal of chromium from sewer water, Environ. Nanotechnol. Monit. Manage., 14 (2020) 100319, doi: 10.1016/j.enmm.2020.100319.
  2. S. Pap, V. Bezanovic, J. Radonic, A. Babic, S. Saric, D. Adamovic, M.T. Sekulic, Synthesis of highly-efficient functionalized biochars from fruit industry waste biomass for the removal of chromium and lead, J. Mol. Liq., 268 (2018) 315–325.
  3. S.K. Sharma, B. Petrusevski, G. Amy, Chromium removal from water: a review, J. Water Supply Res. Technol. AQUA, 57 (2008) 541–553.
  4. H. Borji, G.M. Ayoub, R. Bilbeisi, N. Nassar, L. Malaeb, How effective are nanomaterials for the removal of heavy metals from water and wastewater?, Water Air Soil Pollut., 231 (2020) 330.
  5. Y. Yu, Q. An, L. Jin, N. Luo, Z. Li, J. Jiang, Unraveling sorption of Cr(VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: implicit mechanism and application, Bioresour. Technol., 297 (2020) 122466, doi: 10.1016/j.biortech.2019.122466.
  6. M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: a review, Water Air Soil Pollut., 200 (2009) 59–77.
  7. M.I. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y.S. Ok, X. Cao, A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, Crit. Rev. Env. Sci. Technol., 46 (2016) 406–433.
  8. S. Elkhalifa, T. Al-Ansari, H.R. Mackey, G. McKay, Food waste to biochars through pyrolysis: a review, Resour. Conserv. Recycl., 144 (2019) 310–320.
  9. M. Waqas, A.S. Nizami, A.S. Aburiazaiza, M.A. Barakat, I.M.I. Ismail, M.I. Rashid, Optimization of food waste compost with the use of biochar, J. Environ. Manage., 216 (2018) 70–81.
  10. S. Mukherjee, A.K. Thakur, R. Goswami, P. Mazumder, K. Taki, M. Vithanage, M. Kumar, Efficacy of agricultural waste derived biochar for arsenic removal: tackling water quality in the Indo-Gangetic plain, J. Environ. Manage., 281 (2021) 111814, doi: 10.1016/j.jenvman.2020.111814.
  11. Q. Jin, Z. Wang, Y. Feng, Y.-T. Kim, A.C. Stewart, S.F. O’Keefe, A.P. Neilson, Z. He, H. Huang, Grape pomace and its secondary waste management: biochar production for a broad range of lead (Pb) removal from water, Environ. Res., 186 (2020) 109442, doi: 10.1016/j.envres.2020.109442.
  12. J. Zhang, X. Hu, J. Yan, L. Long, Y. Xue, Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution, Environ. Sci. Pollut. Res., 27 (2020) 9582–9588.
  13. D. Mohan, S. Rajput, V. Singh, P.H. Steele, C.U. Pittman Jr., Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent, J. Hazard. Mater., 188 (2011) 319–333.
  14. E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, Biochar production by sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis, 101 (2013) 72–78.
  15. U. Khalil, M.B. Shakoor, S. Ali, M. Rizwan, M N. Alyemeni, L. Wijaya, Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater, J. Saudi Chem. Soc., 24 (2020) 799–810.
  16. Y. Zhang, N. Liu, Y. Yang, J. Li, S. Wang, J. Lv, R. Tang, Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal, Colloids Surf., A, 600 (2020) 124926, doi: 10.1016/j.colsurfa.2020.124926.
  17. L. Liu, X. Liu, D. Wang, H. Lin, L. Huang, Removal and reduction of Cr(VI) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge, J. Cleaner Prod., 257 (2020) 120562, doi: 10.1016/j.jclepro.2020.120562.
  18. J. Bu, W. Li, N. Niu, N. Guo, H. Zhou, C. Chen, A. Ding, Adsorption of Cr(VI) from wastewater by iron-modified coconut shell biochar, E3S Web Conf., 248 (2021) 01059, doi: 10.1051/e3sconf/202124801059.
  19. X.-J. Liu, M.-F. Li, S.K. Singh, Manganese-modified lignin biochar as adsorbent for removal of methylene blue, J. Mater. Res. Technol., 12 (2021) 1434–1445.
  20. J.Y. Qi, S. Sato, Magnesium-modified biochars for nitrate adsorption and removal in continuous flow system, Bull. Plankton Eco-Eng. Res., 1 (2021) 32–46.
  21. L.-L. Ling, W.-J. Liu, S. Zhang, H. Jiang, Magnesium oxide embedded nitrogen self-doped biochar composites: fast and high-efficiency adsorption of heavy metals in an aqueous solution, Environ. Sci. Technol., 51 (2017) 10081–10089.
  22. H. Wang, J. Dai, H. Chen, F. Wang, Y. Zhu, J. Liu, B. Zhou, R. Yuan, Adsorption of phosphate by Mg/Fe-doped wheat straw biochars optimized using response surface methodology: mechanisms and application in domestic sewage, Environ. Eng. Res., 28 (2023) 210602, doi: 10.4491/eer.2021.602.
  23. Q. Zheng, L. Yang, D. Song, S. Zhang, H. Wu, S. Li, X. Wang, High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil, Chemosphere, 259 (2020) 127469, doi: 10.1016/j.chemosphere.2020.127469.
  24. P. Maneechakr, S. Mongkollertlop, Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue, J. Environ. Chem. Eng., 8 (2020) 104467, doi: 10.1016/j.jece.2020.104467.
  25. M. Yi, Y. Chen, Enhanced phosphate adsorption on Ca-Mg-loaded biochar derived from tobacco stems, Water Sci. Technol., 78 (2018) 2427–2436.
  26. T. Liao, T. Li, X. Su, X. Yu, H. Song, Y. Zhu, Y. Zhang, La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal, Bioresour. Technol., 263 (2018) 207–213.
  27. Q. He, Y. Luo, Y. Feng, K. Xie, K. Zhang, S. Shen, Y. Luo, F. Wang, Biochar produced from tobacco stalks, eggshells, and Mg for phosphate adsorption from a wide range of pH aqueous solutions, Mater. Res. Express, 7 (2020) 115603, doi: 10.1088/2053-1591/abcb3d.
  28. Magnesium (Mg) and Water, 2022. Available at https://www.lenntech.com/periodic/water/magnesium/magnesium-andwater.htm [Accessed 9/3/2022].
  29. Magnesium, 2022. Available at https://www.canada.ca › watermagnesium- eau-eng [Accessed 9/3/2022].
  30. C. Fang, T. Zhang, P. Li, R.-F. Jiang, Y.-C. Wang, Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater, Int. J. Environ. Res. Public Health, 11 (2014) 9217–9237.
  31. N. Ballav, H.J. Choi, S.B. Mishra, A. Maity, Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI), J. Ind. Eng., 20 (2014) 4085–4093.
  32. P. Wang, I.M.C. Lo, Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water, Water Res., 43 (2009) 3727–3734.
  33. Y. Liu, Z. He, M. Uchimiya, Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy, Mod. Appl. Sci., 9 (2015) 246–253.
  34. A. Li, H. Deng, Y. Jiang, C. Ye, B. Yu, X. Zhou, A. Ma, Superefficient removal of heavy metals from wastewater by Mg-loaded biochars: adsorption characteristics and removal mechanism, Langmuir, 36 (2020) 9160–9174.
  35. A.M. Dehkhoda, N. Ellis, E. Gyenge, Electrosorption on activated biochar: effect of thermo-chemical activation treatment on the electric double layer capacitance, J. Appl. Electrochem., 44 (2014) 141–157.
  36. Y. Liu, X. Zhao, J. Li, D. Ma, R. Han, Characterization of biochar from pyrolysis of wheat straw and its evaluation on methylene blue adsorption, Desal. Water Treat., 46 (2012) 115–123.
  37. Y. Deng, X. Li, F. Ni, Q. Liu, Y. Yang, M. Wang, T. Ao, W. Chen, Synthesis of magnesium modified biochar for removing copper, lead and cadmium in single and binary systems from aqueous solutions: adsorption mechanism, Water, 13 (2021) 599, doi: 10.3390/w13050599.
  38. L. Ge, W. Wang, Z. Peng, F. Tan, X. Wang, J. Chen, X. Qiao, Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water, Powder Technol., 326 (2018) 393–401.
  39. Y. Chen, T. Zhou, H. Fang, S. Li, Y. Yao, Y. He, A novel preparation of nano-sized hexagonal Mg(OH)2, Procedia Eng., 102 (2015) 388–394.
  40. K.M. Saoud, S. Saeed, R.M. Al-Soubaihi, M.F. Bertino, Microwave assisted preparation of magnesium hydroxide nano-sheets, Am. J. Nanomater., 2 (2014) 21–25.
  41. M. Saffari, Response surface methodological approach for optimizing the removal of cadmium from aqueous solutions using pistachio residues biochar supported/non-supported by nanoscale zero-valent iron, Main Group Met. Chem., 41 (2018) 167–181.
  42. C. Yu, H. Wang, M. Lu, F. Zhu, Y. Yang, H. Huang, C. Zou, J. Xiong, Z. Zhong, Application of rice straw, corn cob, and lotus leaf as agricultural waste derived catalysts for low temperature SCR process: optimization of preparation process, catalytic activity and characterization, Aerosol Air Qual. Res., 20 (2020) 862–876.
  43. M. Zhang, B. Gao, Y. Yao, Y. Xue, M. Inyang, Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions, Chem. Eng. J., 210 (2012) 26–32.
  44. G. Leofanta, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today, 41 (1998) 207–219.
  45. K. Ahalya, N. Suriyanarayanan, V. Ranjithkumar, Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles, J. Magn. Magn. Mater., 372 (2014) 208–213.
  46. S. Chen, Q. Yue, B. Gao, X. Xu, Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue, J. Colloid Interface Sci., 349 (2010) 256–264.
  47. N. Mehrabi, M. Soleimani, M. Madadi Yeganeh, H. Sharififard, Parameters optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles, RSC Adv., 5 (2015) 51470–51482.
  48. J. Katenta, C. Nakiguli, P. Mukasa, E. Ntambi, Removal of chromium(VI) from tannery effluent using bio-char of Phoenix reclinata seeds, Green Sustainable Chem., 10 (2020) 91–107.
  49. F. Gorzin, M.M. Bahri Rasht Abadi, Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: kinetics and thermodynamics studies, Adsorpt. Sci. Technol., 36 (2018) 149–169.
  50. D. Zhang, Y. Ma, H. Feng, Y. Hao, Adsorption of Cr(VI) from aqueous solution using carbon-microsilica composite adsorbent, J. Chil. Chem. Soc., 57 (2012) 964–968.
  51. Y. Wang, Q. Yang, J. Chen, J. Yang, Y. Zhang, Y. Chen, X. Li, W. Du, A. Liang, S.-H. Ho, J.-S. Chang, Adsorption behavior of Cr(VI) by magnetically modified Enteromorpha prolifera based biochar and the toxicity analysis, J. Hazard. Mater., 395 (2020) 122658, doi: 10.1016/j.jhazmat.2020.122658.
  52. E.C. Nnadozie, P. Ajibade, Adsorption, kinetic and mechanistic studies of Pb(II) and Cr(VI) ions using APTES functionalized magnetic biochar, Microporous Mesoporous Mater., 309 (2020) 110573, doi: 10.1016/j.micromeso.2020.110573.
  53. Y. Huang, B. Wang, J. Lv, Y. He, H.H. Zhang, W. Li, Y. Li, T. Wågberg, G. Hu, Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high adsorption capacity for Cr(VI) removal from water, J. Hazard. Mater., 436 (2020) 129270, doi: 10.1016/j.jhazmat.2022.129270.
  54. B. Ren, Y. Jin, L. Zhao, C. Cui, X. Song, Enhanced Cr(VI) adsorption using chemically modified dormant Aspergillus niger spores: process and mechanisms, J. Environ. Chem. Eng. 10 (2022) 106955, doi: 10.1016/j.jece.2021.106955.
  55. J. Begum, Z. Hussian, T. Noor, Adsorption and kinetic study of Cr(VI) on ZIF-8 based composites, Mater. Res. Express, 7 (2020) 015083, doi: 10.1088/2053-1591/ab6b66.
  56. D.R. Vaddi, T.R. Gurugubelli, R. Koutavarapu, D.-Y. Lee, J. Shim, Bio-stimulated adsorption of Cr(VI) from aqueous solution by groundnut shell activated Carbon@Al embedded material, Catalysts, 12 (2022) 290, doi: 10.3390/catal12030290.