References

  1. Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun., 9 (2018) 187, doi: 10.1038/s41467-017-02600-2.
  2. I.M. El-Nahhal, N.M. El-Ashgar, A review on polysiloxaneimmobilized ligand systems: synthesis, characterization and applications, J. Organomet. Chem., 692 (2007) 2861–2886.
  3. T.H. Tran, H. Okabe, Y. Hidaka, K. Hara, Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting, Carbohydr. Polym., 157 (2017) 335–343.
  4. M. Ahmad, K. Manzoor, S. Ahmad, S. Ikram, Preparation, kinetics, thermodynamics, and mechanism evaluation of thiosemicarbazide modified green carboxymethyl cellulose as an efficient Cu(II) adsorbent, J. Chem. Eng. Data, 63 (2018) 1905–1916.
  5. K. Du, S. Li, L. Zhao, L. Qiao, H. Ai, X. Liu, One-step growth of porous cellulose beads directly on bamboo fibers via oxidationderived method in aqueous phase and their potential for heavy metal ions adsorption, ACS Sustainable Chem. Eng., 6 (2018) 17068–17075.
  6. H. Gaete Olivares, N. Moyano Lagos, C. Jara Gutierrez, R. Carrasco Kittelsen, G. Lobos Valenzuela, M.E. Hidalgo Lillo, Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile, Environ. Monit. Assess., 188 (2016) 25, doi: 10.1007/s10661-015-5021-5.
  7. S.E. Sabatini, Á.B. Juárez, M.R. Eppis, L. Bianchi, C.M. Luquet, M. del Carmen Ríos de Molina, Oxidative stress and antioxidant defenses in two green microalgae exposed to copper, Ecotoxicol. Environ. Saf., 72 (2009) 1200–1206.
  8. M.D. Machado, E.V. Soares, Short- and long-term exposure to heavy metals induced oxidative stress response in Pseudokirchneriella subcapitata, Clean Soil Air Water, 44 (2016) 1578–1583.
  9. R. Pandey, G. Zinta, H. AbdElgawad, A. Ahmad, V. Jain, I.A. Janssens, Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress, Biotechnol. Adv., 33 (2015) 303–316.
  10. G.A. Adebisi, Z.Z. Chowdhury, P.A. Alaba, Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent, J. Cleaner Prod., 148 (2017) 958–968.
  11. Z. Li, Z. Wang, C. Wang, S. Ding, F. Li, H. Lin, Preparation of magnetic resin microspheres M-P(MMA-DVB-GMA) and the adsorption property to heavy metal ions, Appl. Surf. Sci., 496 (2019) 143708, doi: 10.1016/j.apsusc.2019.143708.
  12. B. Zhao, H. Jiang, Z. Lin, S. Xu, J. Xie, A. Zhang, Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions, Carbohydr. Polym., 224 (2019) 115022, doi: 10.1016/j.carbpol.2019.115022.
  13. M. Ahmad, S. Ahmed, B.L. Swami, S. Ikram, Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent, Carbohydr. Polym., 132 (2015) 164–172.
  14. J. Lindh, D.O. Carlsson, M. Strømme, A. Mihranyan, Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water, Biomacromolecules, 15 (2014) 1928–1932.
  15. J. Lindh, C. Ruan, M. Strømme, A. Mihranyan, Preparation of porous cellulose beads via introduction of diamine spacers, Langmuir, 32 (2016) 5600–5607.
  16. U.-J. Kim, S. Kuga, M. Wada, T. Okano, T. Kondo, Periodate oxidation of crystalline cellulose, Biomacromolecules, 1 (2000) 488–492.
  17. E.B. Strong, C.W. Kirschbaum, A.W. Martinez, N.W. Martinez, Paper miniaturization via periodate oxidation of cellulose, Cellulose, 25 (2018) 3211–3217.
  18. F.F. Lu, H.Y. Yu, Y. Zhou, J.M. Yao, Spherical and rod-like dialdehyde cellulose nanocrystals by sodium periodate oxidation: optimization with double response surface model and templates for silver nanoparticles, eXPRESS Polym. Lett., 10 (2016) 965–976.
  19. L. Zhu, Y. Liu, Z. Jiang, E. Sakai, J. Qiu, P. Zhu, Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as cross-linker, Cellulose, 26 (2019) 5291–5303.
  20. R.S. Jagadish, K.N. Divyashree, P. Viswanath, P. Srinivas, B. Raj, Preparation of N-vanillyl chitosan and
    4-hydroxybenzyl chitosan and their physico-mechanical, optical, barrier, and antimicrobial properties, Carbohydr. Polym., 87 (2012) 110–116.
  21. Z. Yang, H. Liu, J. Li, K. Yang, Z. Zhang, F. Chen, B. Wang, High-throughput metal trap: sulfhydryl-functionalized wood membrane stacks for rapid and highly efficient heavy metal ion removal, ACS Appl. Mater. Interfaces, 12 (2020) 15002–15011.
  22. S. Kumari, G.S. Chauhan, New cellulose–lysine Schiff-basebased sensor–adsorbent for mercury ions, ACS Appl. Mater. Interfaces, 6 (2014) 5908–5917.
  23. A. Daochalermwong, N. Chanka, K. Songsrirote, P. Dittanet, C. Niamnuy, A. Seubsai, Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber, ACS Omega, 5 (2020) 5285–5296.
  24. E. Schacht, B. Bogdanov, A.V.D. Bulcke, N. De Rooze, Hydrogels prepared by crosslinking of gelatin with dextran dialdehyde, React. Funct. Polym., 33 (1997) 109–116.
  25. I.H.S. Ribeiro, D.T. Reis, D.H. Pereira, A DFT-based analysis of adsorption of Cd2+, Cr3+, Cu2+, Hg2+, Pb2+, and Zn2+, on vanillin monomer: a study of the removal of metal ions from effluents, J. Mol. Model., 25 (2019) 267, doi: 10.1007/s00894-019-4151-z.