References

  1. C.C. Wu, S.D. Pan, Y.P. Shan, J.J. Cui, Y. Ma, Residue status and risk assessment of neonicotinoids under real field conditions: based on a two-year survey of cotton fields throughout China, Environ. Technol. Innovation, 28 (2022) 102689, doi: 10.1016/j.eti.2022.102689.
  2. M.A.I. Ahmed, C.F.A. Vogel, G. Malafaia, Short exposure to nitenpyram pesticide induces effects on reproduction, development and metabolic gene expression profiles in Drosophila melanogaster (Diptera: Drosophilidae), Sci. Total Environ., 804 (2022) 150254, doi: 10.1016/j.scitotenv.2021.150254.
  3. C.C. Wu, Z.N. Wang, Y. Ma, J.Y. Luo, X.K. Gao, J. Ning, X.D. Mei, D.M. She, Influence of the neonicotinoid insecticide thiamethoxam on soil bacterial community composition and metabolic function, J. Hazard. Mater., 405 (2021) 124275, doi: 10.1016/j.jhazmat.2020.124275.
  4. W. Liu, Z.C. Li, X.Y. Cui, F. Luo, C.Y. Zhou, J.Y. Zhang, L.G. Xing, Genotoxicity, oxidative stress and transcriptomic effects of Nitenpyram on human bone marrow mesenchymal stem cells, Toxicol. Appl. Pharm., 446 (2022) 116065, doi: 10.1016/j.taap.2022.116065.
  5. S.M. Crayton, P.B. Wood, D.J. Brown, A.R. Millikin, T.J. McManus, T.J. Simpson, K.-M. Ku, Y.-L. Park, Bioaccumulation of the pesticide imidacloprid in stream organisms and sublethal effects on salamanders, Global Ecol. Conserv., 24 (2020) e01292, doi: 10.1016/j.gecco.2020.e01292.
  6. L.B. Merga, P.J. Van den Brink, Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics, Sci. Total Environ., 784 (2021) 147167, doi: 10.1016/j.scitotenv.2021.147167.
  7. Z.K. Liu, S. Cui, L.M. Zhang, Z.L. Zhang, R. Hough, Q. Fu, Y.-F. Li, L.H. An, M.Z. Huang, K.Y. Li, Y.X. Ke, F.X. Zhang, Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, northeast China, Environ. Sci. Ecotechnol., 8 (2021) 100128, doi: 10.1016/j.ese.2021.100128.
  8. H.D. Tan, H.J. Zhang, C.Y. Wu, C.M. Wang, Q.F. Li, Pesticides in surface waters of tropical river basins draining areas with rice–vegetable rotations in Hainan, China: occurrence, relation to environmental factors, and risk assessment, Environ. Pollut., 283 (2021) 117100, doi: 10.1016/j.envpol.2021.117100.
  9. J.J. Xiong, B.X. Tan, X. Ma, H.Z. Li, J. You, Tracing neonicotinoid insecticides and their transformation products from paddy field to receiving waters using polar organic chemical integrative samplers, J. Hazard. Mater., 413 (2021) 125421, doi: 10.1016/j.jhazmat.2021.125421.
  10. Y.P. Zhang, H.F. Zhang, J. Wang, Z.Y. Yu, H.Y. Li, M. Yang, Suspect and target screening of emerging pesticides and their transformation products in an urban river using LC-QTOF-MS, Sci. Total Environ., 790 (2021) 147978, doi: 10.1016/j.scitotenv.2021.147978.
  11. L. Bijlsma, E. Pitarch, F. Hernández, E. Fonseca, J.M. Marín, M. Ibáñez, T. Portolés, A. Rico, Ecological risk assessment of pesticides in the Mijares River (eastern Spain) impacted by citrus production using wide-scope screening and target quantitative analysis, J. Hazard. Mater., 412 (2021) 125277, doi: 10.1016/j.jhazmat.2021.125277.
  12. Z.U. Shah, S. Parveen, Pesticide residues in Rita rita and Cyprinus carpio from river Ganga, India, and assessment of human health risk, Toxicol. Rep., 8 (2021) 1638–1644.
  13. S.M. Stackpoole, M.E. Shoda, L. Medalie, W.W. Stone, Pesticides in US Rivers: regional differences in use, occurrence, and environmental toxicity, 2013 to 2017, Sci. Total Environ., 787 (2021) 147147, doi: 10.1016/j.scitotenv.2021.147147.
  14. A.C. Taylor, G.A. Mills, A. Gravell, M. Kerwick, G.R. Fones, Passive sampling with suspect screening of polar pesticides and multivariate analysis in river catchments: informing environmental risk assessments and designing future monitoring programmes, Sci. Total Environ., 797 (2021) 147519, doi: 10.1016/j.scitotenv.2021.147519.
  15. Q.Z. Zhou, W.Z. Wang, F.M. Liu, R. Chen, Removal of difenoconazole and nitenpyram by composite calcium alginate beads during apple juice clarification, Chemosphere, 286 (2022) 131813, doi: 10.1016/j.chemosphere.2021.131813.
  16. T. González, J.R. Dominguez, S. Correia, Neonicotinoids removal by associated binary, tertiary and quaternary advanced oxidation processes: synergistic effects, kinetics and mineralization, J. Environ. Manage., 261 (2020) 110156, doi: 10.1016/j.jenvman.2020.110156.
  17. A.W. Chen, W.J. Li, X.X. Zhang, C. Shang, S. Luo, R.Y. Cao, D.D. Jin, Biodegradation and detoxification of neonicotinoid insecticide thiamethoxam by white-rot fungus Phanerochaete chrysosporium, J. Hazard. Mater., 417 (2021) 126017, doi: 10.1016/j.jhazmat.2021.126017.
  18. I. González-Mariño, I. Rodríguez, L. Rojo, R. Cela, Photodegradation of nitenpyram under UV and solar radiation: kinetics, transformation products identification and toxicity prediction, Sci. Total Environ., 644 (2018) 995–1005.
  19. S. Dolatabadi, M. Fattahi, M. Nabati, Solid state dispersion and hydrothermal synthesis, characterization and evaluations of TiO2/ZnO nanostructures for degradation of Rhodamine B, Desal. Water Treat., 231 (2021) 425–435.
  20. H.A. Patehkhor, M. Fattahi, M. Khosravi-Nikou, Synthesis and characterization of ternary chitosan-TiO2-ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater, Sci. Rep., 11 (2021) 24177, doi: 10.1038/s41598-021-03492-5.
  21. Y.-J. Lee, J.-K. Kang, S.-J. Park, C.-G. Lee, J.-K. Moon, P.J.J. Alvarez, Photocatalytic degradation of neonicotinoid insecticides using sulfate-doped Ag3PO4 with enhanced visible light activity, Chem. Eng. J., 402 (2020) 126183, doi: 10.1016/j.cej.2020.126183.
  22. J.F. Zheng, X. Tang, C.Z. Fan, Y.C. Deng, X.M. Li, Q. Yang, D.B. Wang, A. Duan, J. Luo, Z. Chen, B.W. Zhang, Facile synthesis of Ag@AgCl/ZnAl-LDH sesame balls nanocomposites with enhanced photocatalytic performance for the degradation of neonicotinoid pesticides, Chem. Eng. J., 446 (2022) 136485, doi: 10.1016/j.cej.2022.136485.
  23. X. Liu, C.S. Li, B.J. Zhang, M. Yuan, Y.Q. Ma, F.Y. Kong, A facile strategy for photocatalytic degradation of seven neonicotinoids over sulfur and oxygen co-doped carbon nitride, Chemosphere, 253 (2020) 126672, doi: 10.1016/j.chemosphere.2020.126672.
  24. X.T. Liu, S.N. Gu, Y.J. Zhao, G.W. Zhou, W.J. Li, BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: a brief review, J. Mater. Sci. Technol., 56 (2020) 45–68.
  25. H.H. Ren, F.H. Huang, J.M. Jiang, L. Wang, J.L. Zhang, Development of photocatalyst based on NaYF4: Yb, Tm@NaYF4: Yb, Ce/NH2-MIL-101 (Cr): doping Ce3+ ions to promote the efficient energy transfer between core and shell, Chem. Eng. J., 427 (2022) 132023, doi: 10.1016/j.cej.2021.132023.
  26. H.Z. Zhu, Y.Q. Yang, Y.Y. Kang, P. Niu, X.D. Kang, Z.Q. Yang, H.Q. Ye, G. Liu, Strong interface contact between NaYF4:Yb,Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites, J. Mater. Sci. Technol., 102 (2022) 1–7.
  27. H.P. Li, B. Sun, T.T. Gao, H. Li, Y.Q. Ren, G.W. Zhou, Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production, Chin. J. Catal., 43 (2022) 461–471.
  28. Y.C. Lu, X.Y. Ou, W.G. Wang, J.J. Fan, K.L. Lv, Fabrication of TiO2 nanofiber assembly from nanosheets
    (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity, Chin. J. Catal., 41 (2020) 209–218.
  29. J. Wang, G.H. Wang, B. Cheng, J.G. Yu, J.J. Fan, Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo red photodegradation, Chin. J. Catal., 42 (2021) 56–68.
  30. H. Mahmoodi, M. Fattahi, M. Motevassel, Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling, RSC Adv., 11 (2021) 36289–36304.
  31. H.Y. Fan, G.Y. Yi, Z.T. Zhang, X.X. Zhang, P. Li, C.X. Zhang, L.J. Chen, Y.L. Zhang, Q. Sun, Binary TiO2/RGO photocatalyst for enhanced degradation of phenol and its application in underground coal gasification wastewater treatment, Opt. Mater., 120 (2021) 111482, doi: 10.1016/j.optmat.2021.111482.
  32. H.N. Huang, H.L. Li, Z.Y. Wang, P. Wang, Z.K. Zheng, Y.Y. Liu, Y. Dai, Y.J. Li, B.B. Huang, Efficient near-infrared photocatalysts based on NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@TiO2 core@shell nanoparticles, Chem. Eng. J., 361 (2019) 1089–1097.
  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  34. M.L. Tang, Y.H. Ao, P.F. Wang, C. Wang, All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation, J. Hazard. Mater., 387 (2020) 121713, doi: 10.1016/j.jhazmat.2019.121713.
  35. J.F. Zheng, Y.C. Deng, C.Z. Fan, X.M. Li, D.X. Gong, C.W. Li, Z.Y. Ye, Novel Zn-Al LDHs based S-scheme heterojunction with coral reef-like structure for photocatalytic activation of peroxymonosulfate towards nitenpyram decomposition, J. Environ. Chem. Eng., 10 (2022) 108188, doi: 10.1016/j.jece.2022.108188.
  36. J.F. Zheng, W.B. Li, R.D. Tang, S. Xiong, D.X. Gong, Y.C. Deng, Z.P. Zhou, L. Li, L. Su, L.H. Yang, Ultrafast photodegradation of nitenpyram by Ag/Ag3PO4/Zn–Al LDH composites activated by persulfate system: removal efficiency, degradation pathway and reaction mechanism, Chemosphere, 292 (2022) 133431, doi: 10.1016/j.chemosphere.2021.133431.
  37. S.Q. Zhou, Y. Wang, K. Zhou, D.Y. Ba, Y.H. Ao, P.F. Wang, In-situ construction of Z-scheme g-C3N4/WO3 composite with enhanced visible-light responsive performance for nitenpyram degradation, Chin. Chem. Lett., 32 (2021) 2179–2182.