References
- C.C. Wu, S.D. Pan, Y.P. Shan, J.J. Cui, Y. Ma, Residue status and
risk assessment of neonicotinoids under real field conditions:
based on a two-year survey of cotton fields throughout China,
Environ. Technol. Innovation, 28 (2022) 102689, doi: 10.1016/j.eti.2022.102689.
- M.A.I. Ahmed, C.F.A. Vogel, G. Malafaia, Short exposure
to nitenpyram pesticide induces effects on reproduction,
development and metabolic gene expression profiles in
Drosophila melanogaster (Diptera: Drosophilidae), Sci. Total
Environ., 804 (2022) 150254, doi: 10.1016/j.scitotenv.2021.150254.
- C.C. Wu, Z.N. Wang, Y. Ma, J.Y. Luo, X.K. Gao, J. Ning,
X.D. Mei, D.M. She, Influence of the neonicotinoid insecticide
thiamethoxam on soil bacterial community composition
and metabolic function, J. Hazard. Mater., 405 (2021) 124275,
doi: 10.1016/j.jhazmat.2020.124275.
- W. Liu, Z.C. Li, X.Y. Cui, F. Luo, C.Y. Zhou, J.Y. Zhang,
L.G. Xing, Genotoxicity, oxidative stress and transcriptomic
effects of Nitenpyram on human bone marrow mesenchymal
stem cells, Toxicol. Appl. Pharm., 446 (2022) 116065,
doi: 10.1016/j.taap.2022.116065.
- S.M. Crayton, P.B. Wood, D.J. Brown, A.R. Millikin, T.J. McManus,
T.J. Simpson, K.-M. Ku, Y.-L. Park, Bioaccumulation of the
pesticide imidacloprid in stream organisms and sublethal
effects on salamanders, Global Ecol. Conserv., 24 (2020) e01292,
doi: 10.1016/j.gecco.2020.e01292.
- L.B. Merga, P.J. Van den Brink, Ecological effects of imidacloprid
on a tropical freshwater ecosystem and subsequent recovery
dynamics, Sci. Total Environ., 784 (2021) 147167, doi: 10.1016/j.scitotenv.2021.147167.
- Z.K. Liu, S. Cui, L.M. Zhang, Z.L. Zhang, R. Hough, Q. Fu,
Y.-F. Li, L.H. An, M.Z. Huang, K.Y. Li, Y.X. Ke, F.X. Zhang,
Occurrence, variations, and risk assessment of neonicotinoid
insecticides in Harbin section of the Songhua River, northeast
China, Environ. Sci. Ecotechnol., 8 (2021) 100128, doi: 10.1016/j.ese.2021.100128.
- H.D. Tan, H.J. Zhang, C.Y. Wu, C.M. Wang, Q.F. Li, Pesticides
in surface waters of tropical river basins draining areas with
rice–vegetable rotations in Hainan, China: occurrence, relation
to environmental factors, and risk assessment, Environ. Pollut.,
283 (2021) 117100, doi: 10.1016/j.envpol.2021.117100.
- J.J. Xiong, B.X. Tan, X. Ma, H.Z. Li, J. You, Tracing neonicotinoid
insecticides and their transformation products from paddy
field to receiving waters using polar organic chemical
integrative samplers, J. Hazard. Mater., 413 (2021) 125421,
doi: 10.1016/j.jhazmat.2021.125421.
- Y.P. Zhang, H.F. Zhang, J. Wang, Z.Y. Yu, H.Y. Li, M. Yang,
Suspect and target screening of emerging pesticides and their
transformation products in an urban river using LC-QTOF-MS,
Sci. Total Environ., 790 (2021) 147978, doi: 10.1016/j.scitotenv.2021.147978.
- L. Bijlsma, E. Pitarch, F. Hernández, E. Fonseca, J.M. Marín,
M. Ibáñez, T. Portolés, A. Rico, Ecological risk assessment
of pesticides in the Mijares River (eastern Spain) impacted
by citrus production using wide-scope screening and target
quantitative analysis, J. Hazard. Mater., 412 (2021) 125277,
doi: 10.1016/j.jhazmat.2021.125277.
- Z.U. Shah, S. Parveen, Pesticide residues in Rita rita and Cyprinus
carpio from river Ganga, India, and assessment of human health
risk, Toxicol. Rep., 8 (2021) 1638–1644.
- S.M. Stackpoole, M.E. Shoda, L. Medalie, W.W. Stone, Pesticides
in US Rivers: regional differences in use, occurrence, and
environmental toxicity, 2013 to 2017, Sci. Total Environ.,
787 (2021) 147147, doi: 10.1016/j.scitotenv.2021.147147.
- A.C. Taylor, G.A. Mills, A. Gravell, M. Kerwick, G.R. Fones,
Passive sampling with suspect screening of polar pesticides
and multivariate analysis in river catchments: informing
environmental risk assessments and designing future
monitoring programmes, Sci. Total Environ., 797 (2021) 147519,
doi: 10.1016/j.scitotenv.2021.147519.
- Q.Z. Zhou, W.Z. Wang, F.M. Liu, R. Chen, Removal of
difenoconazole and nitenpyram by composite calcium alginate
beads during apple juice clarification, Chemosphere, 286 (2022)
131813, doi: 10.1016/j.chemosphere.2021.131813.
- T. González, J.R. Dominguez, S. Correia, Neonicotinoids
removal by associated binary, tertiary and quaternary
advanced oxidation processes: synergistic effects, kinetics
and mineralization, J. Environ. Manage., 261 (2020) 110156,
doi: 10.1016/j.jenvman.2020.110156.
- A.W. Chen, W.J. Li, X.X. Zhang, C. Shang, S. Luo, R.Y. Cao,
D.D. Jin, Biodegradation and detoxification of neonicotinoid
insecticide thiamethoxam by white-rot fungus Phanerochaete
chrysosporium, J. Hazard. Mater., 417 (2021) 126017,
doi: 10.1016/j.jhazmat.2021.126017.
- I. González-Mariño, I. Rodríguez, L. Rojo, R. Cela,
Photodegradation of nitenpyram under UV and solar radiation:
kinetics, transformation products identification and toxicity
prediction, Sci. Total Environ., 644 (2018) 995–1005.
- S. Dolatabadi, M. Fattahi, M. Nabati, Solid state dispersion
and hydrothermal synthesis, characterization and evaluations
of TiO2/ZnO nanostructures for degradation of Rhodamine B,
Desal. Water Treat., 231 (2021) 425–435.
- H.A. Patehkhor, M. Fattahi, M. Khosravi-Nikou, Synthesis
and characterization of ternary chitosan-TiO2-ZnO over
graphene for photocatalytic degradation of tetracycline
from pharmaceutical wastewater, Sci. Rep., 11 (2021) 24177,
doi: 10.1038/s41598-021-03492-5.
- Y.-J. Lee, J.-K. Kang, S.-J. Park, C.-G. Lee, J.-K. Moon,
P.J.J. Alvarez, Photocatalytic degradation of neonicotinoid
insecticides using sulfate-doped Ag3PO4 with enhanced visible
light activity, Chem. Eng. J., 402 (2020) 126183, doi: 10.1016/j.cej.2020.126183.
- J.F. Zheng, X. Tang, C.Z. Fan, Y.C. Deng, X.M. Li,
Q. Yang, D.B. Wang, A. Duan, J. Luo, Z. Chen, B.W. Zhang,
Facile synthesis of Ag@AgCl/ZnAl-LDH sesame balls
nanocomposites with enhanced photocatalytic performance
for the degradation of neonicotinoid pesticides, Chem. Eng. J.,
446 (2022) 136485, doi: 10.1016/j.cej.2022.136485.
- X. Liu, C.S. Li, B.J. Zhang, M. Yuan, Y.Q. Ma, F.Y. Kong, A facile
strategy for photocatalytic degradation of seven neonicotinoids
over sulfur and oxygen co-doped carbon nitride, Chemosphere,
253 (2020) 126672, doi: 10.1016/j.chemosphere.2020.126672.
- X.T. Liu, S.N. Gu, Y.J. Zhao, G.W. Zhou, W.J. Li, BiVO4, Bi2WO6
and Bi2MoO6 photocatalysis: a brief review, J. Mater. Sci.
Technol., 56 (2020) 45–68.
- H.H. Ren, F.H. Huang, J.M. Jiang, L. Wang, J.L. Zhang,
Development of photocatalyst based on NaYF4: Yb, Tm@NaYF4:
Yb, Ce/NH2-MIL-101 (Cr): doping Ce3+ ions to promote the
efficient energy transfer between core and shell, Chem. Eng. J.,
427 (2022) 132023, doi: 10.1016/j.cej.2021.132023.
- H.Z. Zhu, Y.Q. Yang, Y.Y. Kang, P. Niu, X.D. Kang, Z.Q. Yang,
H.Q. Ye, G. Liu, Strong interface contact between NaYF4:Yb,Er
and CdS promoting photocatalytic hydrogen evolution of
NaYF4:Yb,Er/CdS composites, J. Mater. Sci. Technol., 102 (2022)
1–7.
- H.P. Li, B. Sun, T.T. Gao, H. Li, Y.Q. Ren, G.W. Zhou, Ti3C2
MXene co-catalyst assembled with mesoporous TiO2 for
boosting photocatalytic activity of methyl orange degradation
and hydrogen production, Chin. J. Catal., 43 (2022) 461–471.
- Y.C. Lu, X.Y. Ou, W.G. Wang, J.J. Fan, K.L. Lv, Fabrication of
TiO2 nanofiber assembly from nanosheets
(TiO2-NFs-NSs)
by electrospinning-hydrothermal method for improved
photoreactivity, Chin. J. Catal., 41 (2020) 209–218.
- J. Wang, G.H. Wang, B. Cheng, J.G. Yu, J.J. Fan, Sulfur-doped
g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo
red photodegradation, Chin. J. Catal., 42 (2021) 56–68.
- H. Mahmoodi, M. Fattahi, M. Motevassel, Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from
aqueous solution: preparation, characterization, kinetic and
thermodynamic modelling, RSC Adv., 11 (2021) 36289–36304.
- H.Y. Fan, G.Y. Yi, Z.T. Zhang, X.X. Zhang, P. Li, C.X. Zhang,
L.J. Chen, Y.L. Zhang, Q. Sun, Binary TiO2/RGO photocatalyst
for enhanced degradation of phenol and its application in
underground coal gasification wastewater treatment, Opt.
Mater., 120 (2021) 111482, doi: 10.1016/j.optmat.2021.111482.
- H.N. Huang, H.L. Li, Z.Y. Wang, P. Wang, Z.K. Zheng, Y.Y. Liu,
Y. Dai, Y.J. Li, B.B. Huang, Efficient near-infrared photocatalysts
based on NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@TiO2 core@shell
nanoparticles, Chem. Eng. J., 361 (2019) 1089–1097.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun,
A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis
of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- M.L. Tang, Y.H. Ao, P.F. Wang, C. Wang, All-solid-state
Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for
the effective degradation of nitenpyram under visible light
irradiation, J. Hazard. Mater., 387 (2020) 121713, doi: 10.1016/j.jhazmat.2019.121713.
- J.F. Zheng, Y.C. Deng, C.Z. Fan, X.M. Li, D.X. Gong, C.W. Li,
Z.Y. Ye, Novel Zn-Al LDHs based S-scheme heterojunction
with coral reef-like structure for photocatalytic activation
of peroxymonosulfate towards nitenpyram decomposition,
J. Environ. Chem. Eng., 10 (2022) 108188, doi: 10.1016/j.jece.2022.108188.
- J.F. Zheng, W.B. Li, R.D. Tang, S. Xiong, D.X. Gong, Y.C. Deng,
Z.P. Zhou, L. Li, L. Su, L.H. Yang, Ultrafast photodegradation
of nitenpyram by Ag/Ag3PO4/Zn–Al LDH composites activated
by persulfate system: removal efficiency, degradation pathway
and reaction mechanism, Chemosphere, 292 (2022) 133431,
doi: 10.1016/j.chemosphere.2021.133431.
- S.Q. Zhou, Y. Wang, K. Zhou, D.Y. Ba, Y.H. Ao, P.F. Wang,
In-situ construction of Z-scheme g-C3N4/WO3 composite with
enhanced visible-light responsive performance for nitenpyram
degradation, Chin. Chem. Lett., 32 (2021) 2179–2182.