References
- S.H. Khan, B. Pathak, ZnO based photocatalytic degradation
of persistent pesticides: a comprehensive review, Environ.
Nanotechnol. Monit. Manage., 13 (2020) 100290, doi: 10.1016/j.enmm.2020.100290.
- A. Marican, E.F. Durán-Lara, A review on pesticide removal
through different processes, Environ. Sci. Pollut. Res., 25 (2018)
2051–2061.
- C. Sarangapani, N.N. Misra, V. Milosavljevic, P. Bourke,
P.J. Cullen, Pesticide degradation in water using atmospheric
air cold plasma, J. Water Process Eng., 9 (2016) 225–232.
- Z. Fallah, E.N. Zare, M. Ghomi, F. Ahmadijokani, M. Amini,
M. Tajbakhsh, M. Arjmand, G. Sharma, H. Ali, A. Ahmad,
P. Makvandi, E. Lichtfouse, M. Sillanpää, R.S. Varma, Toxicity
and remediation of pharmaceuticals and pesticides using metal
oxides and carbon nanomaterials, Chemosphere, 275 (2021)
130055, doi: 10.1016/j.chemosphere.2021.130055.
- M. Radović Vučić, R. Baošić, J. Mitrović, M. Petrović, N. Velinov,
M. Kostić, A. Bojić, Comparison of the advanced oxidation
processes in the degradation of pharmaceuticals and pesticides
in simulated urban wastewater: principal component analysis
and energy requirements, Process Saf. Environ. Prot., 149 (2021)
786–793.
- K.V. Plakas, A.J. Karabelas, Removal of pesticides from water
by NF and RO membranes — a review, Desalination, 287 (2012)
255–265.
- A. Mojiri, J.L. Zhou, B. Robinson, A. Ohashi, N. Ozaki, T. Kindaichi,
H. Farraji, M. Vakili, Pesticides in aquatic environments and
their removal by adsorption methods, Chemosphere, 253 (2020)
126646, doi: 10.1016/j.chemosphere.2020.126646.
- W. Li, R. Wu, J. Duan, C.P. Saint, J. van Leeuwen, Impact
of prechlorination on organophosphorus pesticides during
drinking water treatment: removal and transformation to toxic
oxon byproducts, Water Res., 105 (2016) 1–10.
- D. Tazdaït, R. Salah, H. Grib, N. Abdi, N. Mameri, Kinetic study
on biodegradation of glyphosate with unacclimated activated
sludge, Int. J. Environ. Health Res., 28 (2018) 448–459.
- D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes,
U. Hübner, Evaluation of advanced oxidation processes for
water and wastewater treatment - a critical review, Water Res.,
139 (2018) 118–131.
- I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides
from water and wastewater: chemical, physical and biological
treatment approaches, Environ. Technol. Innovation, 19 (2020)
101026, doi: 10.1016/j.eti.2020.101026.
- S. Sanches, M.T.B. Cresp, V.J. Pereira, Drinking water treatment
of priority pesticides using low pressure UV photolysis and
advanced oxidation processes, Water Res., 44 (2010) 1809–1818.
- N.H. Ince, Ultrasound-assisted advanced oxidation processes
for water decontamination, Ultrason. Sonochem., 40 (2018)
97–103.
- N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes
(AOPs) involving ultrasound for waste water treatment:
a review with emphasis on cost estimation, Ultrason.
Sonochem., 17 (2010) 990–1003.
- J. Chang, W. Fang, L. Chen, P. Zhang, G. Zhang, H. Zhang,
J. Liang, Q. Wang, W. Ma, Toxicological effects, environmental
behaviors and remediation technologies of herbicide atrazine
in soil and sediment: a comprehensive review, Chemosphere,
307 (2022) 136006, doi: 10.1016/j.chemosphere.2022.136006.
- S. Li, Q. Sun, Q. Wu, W. Gui, G. Zhu, D. Schlenk, Endocrine
disrupting effects of tebuconazole on different life stages of
zebrafish (Danio rerio), Environ. Pollut., 249 (2019) 1049–1059.
- N.A. Kamarudin, S.Z. Zulkifli, M. Azmai, F. Aziz, A. Ismail,
Herbicide diuron as endocrine disrupting chemicals (EDCs)
through histopathalogical analysis in Gonads of Javanese
Medaka (Oryzias javanicus, Bleeker 1854), Animals, 10 (2020)
525, doi: doi: 10.3390/ani10030525.
- J. Chabera, A. Stara, J. Kubec, M. Buric, E. Zuskova, A. Kouba,
J. Velisek, The effect of chronic exposure to chloridazon and its
degradation product chloridazon-desphenyl on signal crayfish
Pacifastacus leniusculus, Ecotoxicol. Environ. Saf., 208 (2021)
111645, doi: 10.1016/j.ecoenv.2020.111645.
- H. Guo, J. Gu, X. Wang, Z. Song, M. Nasir, X. Tuo, Elucidating
the microbiological characteristics of cyromazine affecting
the nitrogen cycle during aerobic composting of pig
manure, Sci. Total Environ., 764 (2021) 142812, doi: 10.1016/j.scitotenv.2020.142812.
- S. Xu, Z. Hao, Y. Li, Y. Zhou, R. Shao, R. Chen, M. Zheng, Y. Xu,
H. Wang, Biochemical toxicity and transcriptome aberration
induced by dinotefuran in Bombyx mori, Environ. Pollut., 307
(2022) 119562, doi: 10.1016/j.envpol.2022.119562.
- W. Li, Y. Liu, J. Duan, J. van Leeuwen and C.P. Saint, UV and
UV/H2O2 treatment of diazinon and its influence on disinfection
byproduct formation following chlorination, Chem. Eng. J.,
274 (2015) 39–49.
- Y. Liu, M. Su, Y. Zhang, J. Duan, W. Li, Influence rule of organic
solvents methanol from sample preparation on degradation rate
and mechanism of atrazine in UV-based oxidation processes,
Acta Chim. Sinica, 77 (2019) 72–83.
- V.J. Pereira, H.S. Weinberg, K.G. Linden, P.C. Singer,
UV degradation kinetics and modeling of pharmaceutical
compounds in laboratory grade and surface water via direct
and indirect photolysis at 254 nm, Environ. Sci. Technol.,
41 (2007) 1682–1688.
- A. Martins, T.C.R. Ferreira, R.L. Carneiro, M. Lanza,
Simultaneous degradation of hexazinone and diuron herbicides
by H2O2/UV and toxicity assessment, J. Brazil. Chem. Soc.,
25 (2014) 2000–2006.
- H. Prosen, L. Zupancic-Krajl, Evaluation of photolysis and
hydrolysis of atrazine and its first degradation products in the
presence of humic acids, Environ. Pollut., 133 (2005) 517–529.
- C.L. Bianchi, C. Pirola, V. Ragaini, E. Selli, Mechanism and
efficiency of atrazine degradation under combined oxidation
processes, Appl. Catal., B, 64 (2006) 131–138.
- Y. Liu, K. Zhu, M. Su, H. Zhu, J. Lu, Y. Wang, J. Dong, H. Qin,
Y. Wang, Y. Zhang, Influence of solution pH on degradation
of atrazine during UV and UV/H2O2 oxidation: kinetics,
mechanism, and degradation pathways, RSC Adv., 9 (2019)
35847–35861.
- F.J. Benitez, F.J. Real, J.L. Acero, C. Garcia, Photochemical
oxidation processes for the elimination of phenyl-urea
herbicides in waters, J. Hazard. Mater., 138 (2006) 278–287.
- S. Semitsoglou-Tsiapou, M.R. Templeton, N.J.D. Graham,
L. Hernández Leal, B.J. Martijn, A. Royce, J.C. Kruithof,
Low pressure UV/H2O2 treatment for the degradation of
the pesticides metaldehyde, clopyralid and mecoprop –
kinetics and reaction product formation, Water Res., 91 (2016)
285–294.
- P. Chelme-Ayala, M.G. El-Din, D.W. Smith, Degradation of
bromoxynil and trifluralin in natural water by direct photolysis
and UV plus H2O2 advanced oxidation process, Water Res.,
44 (2010) 2221–2228.
- M.A. Oturan, J.J. Aaron, Advanced oxidation processes in
water/wastewater treatment: principles and applications.
A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
- Y. Xu, Z. Lin, H. Zhang, Mineralization of sucralose by
UV-based advanced oxidation processes: UV/PDS versus UV/H2O2, Chem. Eng. J., 285 (2016) 392–401.
- Y. Liu, K. Zhu, H. Zhu, M. Zhao, Q. Liu, Photooxidation of
atrazine and its influence on disinfection byproducts formation
during post-chlorination: effect of solution pH and mechanism,
Sci. Rep., 10 (2020) 20355, doi: 10.1038/s41598-020-77006-0.
- D.P. Hessler, V. Gorenflo, F.H. Frimmel, Degradation of aqueous
atrazine and metazachlor solutions by UV and UV/H2O2-
influence of pH and herbicide concentration, Acta Hydroch.
Hydrob., 21 (1993) 209–214.
- S. Malato, J. Cáceres, A. Fernández-Alba, L. Piedra, M. Hernando,
A. Agüera, J. Vial, Photocatalytic treatment of diuron by solar
photocatalysis: evaluation of main intermediates and toxicity,
Environ. Sci. Technol., 37 (2003) 2516–2524.
- M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri,
S.S. Martinez, Advanced oxidation processes for the removal of
organophosphorus pesticides in aqueous matrices: a systematic
review and meta-analysis, Process Saf. Environ., 134 (2020)
292–307.
- K. Kovacs, J. Farkas, G. Vereb, E. Arany, G. Simon, K. Schrantz,
A. Dombi, K. Hernadi, T. Alapi, Comparison of various
advanced oxidation processes for the degradation of phenylurea
herbicides, J. Environ. Sci. Health., Part B, 51 (2016) 205–214.
- A. Dârjan, C. Draghici, D. Perniu, A. Duţa, Chapter 14 –
Degradation of Pesticides by TiO2 Photocatalysis, In:
Environmental Security Assessment and Management of
Obsolete Pesticides in Southeast Europe, Part of the Series
NATO Science for Peace and Security Series C: Environmental
Security, Springer, Dordrecht, 2013.
- S. Sanches, A. Penetra, A. Rodrigues, V.V. Cardoso, E. Ferreira,
M.J. Benoliel, M.T. Barreto Crespo, J.G. Crespo, V.J. Pereira,
Removal of pesticides from water combining low pressure UV
photolysis with nanofiltration, Sep. Purif. Technol., 115 (2013)
73–82.
- S. Agarwal, I. Tyagi, V.K. Gupta, M.H. Dehghani, A. Bagheri,
K. Yetilmezsoy, A. Amrane, B. Heibati,
S. Rodriguez-Couto,
Degradation of azinphos-methyl and chlorpyrifos from
aqueous solutions by ultrasound treatment, J. Mol. Liq.,
221 (2016) 1237–1242.
- P. Debabrata, M. Sivakumar, Sonochemical degradation of
endocrine-disrupting organochlorine pesticide dicofol: investigations
on the transformation pathways of dechlorination and the
influencing operating parameters, Chemosphere, 204 (2018)
101–108.
- E. Bringas, J. Saiz, I. Ortiz, Kinetics of ultrasound-enhanced
electrochemical oxidation of diuron
on boron-doped diamond
electrodes, Chem. Eng. J., 172 (2011) 1016–1022.
- S. Papoutsakis, S. Miralles-Cuevas, N. Gondrexon, S. Baup,
S. Malato, C. Pulgarin, Coupling between
high-frequency
ultrasound and solar photo-Fenton at pilot scale for the
treatment of organic contaminants: an initial approach,
Ultrason. Sonochem., 22 (2015) 527–534.
- Y. Jiang, C. Petrier, T.D. Waite, Sonolysis of 4-chlorophenol in
aqueous solution: effects of substrate concentration, aqueous
temperature and ultrasonic frequency, Ultrason. Sonochem.,
13 (2006) 415–422.
- Y.G. Adewuyi, Sonochemistry: environmental science and
engineering applications, Ind. Eng. Chem. Res., 40 (2001)
4681–4715.
- M.A. Matouq, Z.A. Al-Anber, T. Tagawa, S. Aljbour,
M. Al-Shannag, Degradation of dissolved diazinon pesticide in
water using the high frequency of ultrasound wave, Ultrason.
Sonochem., 15 (2008) 869–874.
- C. Petrer, B. David, S. Laguian, Ultrasonic degradation at
20 kHz and 500 kHz of atrazine and pentachlorophenol in
aqueous solution: preliminary results, Chemosphere, 32 (1996)
1709–1718.
- J.R. Domínguez, T. González, S. Correia, E.M. Domínguez,
Sonochemical degradation of neonicotinoid pesticides in natural
surface waters. influence of operational and environmental
conditions, Environ. Res., 197 (2021) 111021, doi: 10.1016/j.envres.2021.111021.
- X. Lu, W. Qiu, J. Peng, H. Xu, J. Ma, A review on additives-assisted
ultrasound for organic pollutants degradation, J. Hazard.
Mater., 403 (2020) 123915, doi: 10.1016/j.jhazmat.2020.123915.
- Y.C. Chen, P. Smirniotis, Enhancement of photocatalytic
degradation of phenol and chlorophenols by ultrasound, Ind.
Eng. Chem. Res., 41 (2002) 5958–5965.
- T. Lau, W. Chu, N. Graham, The degradation of endocrine
disruptor di-n-butyl phthalate by UV irradiation: a photolysis
and product study, Chemosphere, 60 (2005) 1045–1053.