References

  1. S.H. Khan, B. Pathak, ZnO based photocatalytic degradation of persistent pesticides: a comprehensive review, Environ. Nanotechnol. Monit. Manage., 13 (2020) 100290, doi: 10.1016/j.enmm.2020.100290.
  2. A. Marican, E.F. Durán-Lara, A review on pesticide removal through different processes, Environ. Sci. Pollut. Res., 25 (2018) 2051–2061.
  3. C. Sarangapani, N.N. Misra, V. Milosavljevic, P. Bourke, P.J. Cullen, Pesticide degradation in water using atmospheric air cold plasma, J. Water Process Eng., 9 (2016) 225–232.
  4. Z. Fallah, E.N. Zare, M. Ghomi, F. Ahmadijokani, M. Amini, M. Tajbakhsh, M. Arjmand, G. Sharma, H. Ali, A. Ahmad, P. Makvandi, E. Lichtfouse, M. Sillanpää, R.S. Varma, Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials, Chemosphere, 275 (2021) 130055, doi: 10.1016/j.chemosphere.2021.130055.
  5. M. Radović Vučić, R. Baošić, J. Mitrović, M. Petrović, N. Velinov, M. Kostić, A. Bojić, Comparison of the advanced oxidation processes in the degradation of pharmaceuticals and pesticides in simulated urban wastewater: principal component analysis and energy requirements, Process Saf. Environ. Prot., 149 (2021) 786–793.
  6. K.V. Plakas, A.J. Karabelas, Removal of pesticides from water by NF and RO membranes — a review, Desalination, 287 (2012) 255–265.
  7. A. Mojiri, J.L. Zhou, B. Robinson, A. Ohashi, N. Ozaki, T. Kindaichi, H. Farraji, M. Vakili, Pesticides in aquatic environments and their removal by adsorption methods, Chemosphere, 253 (2020) 126646, doi: 10.1016/j.chemosphere.2020.126646.
  8. W. Li, R. Wu, J. Duan, C.P. Saint, J. van Leeuwen, Impact of prechlorination on organophosphorus pesticides during drinking water treatment: removal and transformation to toxic oxon byproducts, Water Res., 105 (2016) 1–10.
  9. D. Tazdaït, R. Salah, H. Grib, N. Abdi, N. Mameri, Kinetic study on biodegradation of glyphosate with unacclimated activated sludge, Int. J. Environ. Health Res., 28 (2018) 448–459.
  10. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment - a critical review, Water Res., 139 (2018) 118–131.
  11. I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches, Environ. Technol. Innovation, 19 (2020) 101026, doi: 10.1016/j.eti.2020.101026.
  12. S. Sanches, M.T.B. Cresp, V.J. Pereira, Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes, Water Res., 44 (2010) 1809–1818.
  13. N.H. Ince, Ultrasound-assisted advanced oxidation processes for water decontamination, Ultrason. Sonochem., 40 (2018) 97–103.
  14. N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation, Ultrason. Sonochem., 17 (2010) 990–1003.
  15. J. Chang, W. Fang, L. Chen, P. Zhang, G. Zhang, H. Zhang, J. Liang, Q. Wang, W. Ma, Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: a comprehensive review, Chemosphere, 307 (2022) 136006, doi: 10.1016/j.chemosphere.2022.136006.
  16. S. Li, Q. Sun, Q. Wu, W. Gui, G. Zhu, D. Schlenk, Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio), Environ. Pollut., 249 (2019) 1049–1059.
  17. N.A. Kamarudin, S.Z. Zulkifli, M. Azmai, F. Aziz, A. Ismail, Herbicide diuron as endocrine disrupting chemicals (EDCs) through histopathalogical analysis in Gonads of Javanese Medaka (Oryzias javanicus, Bleeker 1854), Animals, 10 (2020) 525, doi: doi: 10.3390/ani10030525.
  18. J. Chabera, A. Stara, J. Kubec, M. Buric, E. Zuskova, A. Kouba, J. Velisek, The effect of chronic exposure to chloridazon and its degradation product chloridazon-desphenyl on signal crayfish Pacifastacus leniusculus, Ecotoxicol. Environ. Saf., 208 (2021) 111645, doi: 10.1016/j.ecoenv.2020.111645.
  19. H. Guo, J. Gu, X. Wang, Z. Song, M. Nasir, X. Tuo, Elucidating the microbiological characteristics of cyromazine affecting the nitrogen cycle during aerobic composting of pig manure, Sci. Total Environ., 764 (2021) 142812, doi: 10.1016/j.scitotenv.2020.142812.
  20. S. Xu, Z. Hao, Y. Li, Y. Zhou, R. Shao, R. Chen, M. Zheng, Y. Xu, H. Wang, Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori, Environ. Pollut., 307 (2022) 119562, doi: 10.1016/j.envpol.2022.119562.
  21. W. Li, Y. Liu, J. Duan, J. van Leeuwen and C.P. Saint, UV and UV/H2O2 treatment of diazinon and its influence on disinfection byproduct formation following chlorination, Chem. Eng. J., 274 (2015) 39–49.
  22. Y. Liu, M. Su, Y. Zhang, J. Duan, W. Li, Influence rule of organic solvents methanol from sample preparation on degradation rate and mechanism of atrazine in UV-based oxidation processes, Acta Chim. Sinica, 77 (2019) 72–83.
  23. V.J. Pereira, H.S. Weinberg, K.G. Linden, P.C. Singer, UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm, Environ. Sci. Technol., 41 (2007) 1682–1688.
  24. A. Martins, T.C.R. Ferreira, R.L. Carneiro, M. Lanza, Simultaneous degradation of hexazinone and diuron herbicides by H2O2/UV and toxicity assessment, J. Brazil. Chem. Soc., 25 (2014) 2000–2006.
  25. H. Prosen, L. Zupancic-Krajl, Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids, Environ. Pollut., 133 (2005) 517–529.
  26. C.L. Bianchi, C. Pirola, V. Ragaini, E. Selli, Mechanism and efficiency of atrazine degradation under combined oxidation processes, Appl. Catal., B, 64 (2006) 131–138.
  27. Y. Liu, K. Zhu, M. Su, H. Zhu, J. Lu, Y. Wang, J. Dong, H. Qin, Y. Wang, Y. Zhang, Influence of solution pH on degradation of atrazine during UV and UV/H2O2 oxidation: kinetics, mechanism, and degradation pathways, RSC Adv., 9 (2019) 35847–35861.
  28. F.J. Benitez, F.J. Real, J.L. Acero, C. Garcia, Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters, J. Hazard. Mater., 138 (2006) 278–287.
  29. S. Semitsoglou-Tsiapou, M.R. Templeton, N.J.D. Graham, L. Hernández Leal, B.J. Martijn, A. Royce, J.C. Kruithof, Low pressure UV/H2O2 treatment for the degradation of the pesticides metaldehyde, clopyralid and mecoprop – kinetics and reaction product formation, Water Res., 91 (2016) 285–294.
  30. P. Chelme-Ayala, M.G. El-Din, D.W. Smith, Degradation of bromoxynil and trifluralin in natural water by direct photolysis and UV plus H2O2 advanced oxidation process, Water Res., 44 (2010) 2221–2228.
  31. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  32. Y. Xu, Z. Lin, H. Zhang, Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2, Chem. Eng. J., 285 (2016) 392–401.
  33. Y. Liu, K. Zhu, H. Zhu, M. Zhao, Q. Liu, Photooxidation of atrazine and its influence on disinfection byproducts formation during post-chlorination: effect of solution pH and mechanism, Sci. Rep., 10 (2020) 20355, doi: 10.1038/s41598-020-77006-0.
  34. D.P. Hessler, V. Gorenflo, F.H. Frimmel, Degradation of aqueous atrazine and metazachlor solutions by UV and UV/H2O2- influence of pH and herbicide concentration, Acta Hydroch. Hydrob., 21 (1993) 209–214.
  35. S. Malato, J. Cáceres, A. Fernández-Alba, L. Piedra, M. Hernando, A. Agüera, J. Vial, Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity, Environ. Sci. Technol., 37 (2003) 2516–2524.
  36. M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri, S.S. Martinez, Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis, Process Saf. Environ., 134 (2020) 292–307.
  37. K. Kovacs, J. Farkas, G. Vereb, E. Arany, G. Simon, K. Schrantz, A. Dombi, K. Hernadi, T. Alapi, Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides, J. Environ. Sci. Health., Part B, 51 (2016) 205–214.
  38. A. Dârjan, C. Draghici, D. Perniu, A. Duţa, Chapter 14 – Degradation of Pesticides by TiO2 Photocatalysis, In: Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe, Part of the Series NATO Science for Peace and Security Series C: Environmental Security, Springer, Dordrecht, 2013.
  39. S. Sanches, A. Penetra, A. Rodrigues, V.V. Cardoso, E. Ferreira, M.J. Benoliel, M.T. Barreto Crespo, J.G. Crespo, V.J. Pereira, Removal of pesticides from water combining low pressure UV photolysis with nanofiltration, Sep. Purif. Technol., 115 (2013) 73–82.
  40. S. Agarwal, I. Tyagi, V.K. Gupta, M.H. Dehghani, A. Bagheri, K. Yetilmezsoy, A. Amrane, B. Heibati,
    S. Rodriguez-Couto, Degradation of azinphos-methyl and chlorpyrifos from aqueous solutions by ultrasound treatment, J. Mol. Liq., 221 (2016) 1237–1242.
  41. P. Debabrata, M. Sivakumar, Sonochemical degradation of endocrine-disrupting organochlorine pesticide dicofol: investigations on the transformation pathways of dechlorination and the influencing operating parameters, Chemosphere, 204 (2018) 101–108.
  42. E. Bringas, J. Saiz, I. Ortiz, Kinetics of ultrasound-enhanced electrochemical oxidation of diuron
    on boron-doped diamond electrodes, Chem. Eng. J., 172 (2011) 1016–1022.
  43. S. Papoutsakis, S. Miralles-Cuevas, N. Gondrexon, S. Baup, S. Malato, C. Pulgarin, Coupling between
    high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach, Ultrason. Sonochem., 22 (2015) 527–534.
  44. Y. Jiang, C. Petrier, T.D. Waite, Sonolysis of 4-chlorophenol in aqueous solution: effects of substrate concentration, aqueous temperature and ultrasonic frequency, Ultrason. Sonochem., 13 (2006) 415–422.
  45. Y.G. Adewuyi, Sonochemistry: environmental science and engineering applications, Ind. Eng. Chem. Res., 40 (2001) 4681–4715.
  46. M.A. Matouq, Z.A. Al-Anber, T. Tagawa, S. Aljbour, M. Al-Shannag, Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave, Ultrason. Sonochem., 15 (2008) 869–874.
  47. C. Petrer, B. David, S. Laguian, Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution: preliminary results, Chemosphere, 32 (1996) 1709–1718.
  48. J.R. Domínguez, T. González, S. Correia, E.M. Domínguez, Sonochemical degradation of neonicotinoid pesticides in natural surface waters. influence of operational and environmental conditions, Environ. Res., 197 (2021) 111021, doi: 10.1016/j.envres.2021.111021.
  49. X. Lu, W. Qiu, J. Peng, H. Xu, J. Ma, A review on additives-assisted ultrasound for organic pollutants degradation, J. Hazard. Mater., 403 (2020) 123915, doi: 10.1016/j.jhazmat.2020.123915.
  50. Y.C. Chen, P. Smirniotis, Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound, Ind. Eng. Chem. Res., 41 (2002) 5958–5965.
  51. T. Lau, W. Chu, N. Graham, The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: a photolysis and product study, Chemosphere, 60 (2005) 1045–1053.