References

  1. M. Wang, C.Y. Jin, J. Kang, J.Y. Liu, Y.M. Tang, Z.L. Li, S.Y. Li, CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: characterization, efficiency and mechanism, Chem. Eng. J., 416 (2021) 128118, doi: 10.1016/j.cej.2020.128118.
  2. Z.L. Li, M. Wang, C.Y. Jin, J. Kang, J. Liu, H.R. Yang, Y.Q. Zhang, Q.Y. Pu, Y. Zhao, M.Y. You, Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation, Chem. Eng. J., 392 (2020) 123789,
    doi: 10.1016/j.cej.2019.123789.
  3. Y.W. Tang, J. Kang, M. Wang, C.Y. Jin, J.Y. Liu, M. Li, S.Y. Li, Z.L. Li, Catalytic degradation of oxytetracycline via FeVO4 nanorods activating PMS and the insights into the performance and mechanism, J. Environ. Chem. Eng., 9 (2021) 105864, doi: 10.1016/j.jece.2021.105864.
  4. S.V. Manjunath, R.S. Baghel, M. Kumar, Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems, Chem. Eng. J., 381 (2020) 122713, doi: 10.1016/j.cej.2019.122713.
  5. Z. Li, Y.Q. Sun, Y. Yang, Y.T. Han, T.S. Wang, J.W. Chen, D.C.W. Tsang, Comparing biochar- and
    bentonite-supported Fe-based catalysts for selective degradation of antibiotics: mechanisms and pathway, Environ. Res., 183 (2020) 109156, doi: 10.1016/j.envres.2020.109156.
  6. Q.L. Ma, H.X. Zhang, X.Y. Zhang, B. Li, R.N. Guo, Q.F. Cheng, X.W. Cheng, Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate, Chem. Eng. J., 360 (2019) 848–860.
  7. Y. Gao, Q. Wang, G.Z. Ji, A.M. Li, Degradation of antibiotic pollutants by persulfate activated with various carbon materials, Chem. Eng. J., 429 (2022) 132387, doi: 10.1016/j.cej.2021.132387.
  8. H.J. Wang, M. Mustafa, G. Yu, M. Ostman, Y. Cheng, Y.J. Wang, M, Tysklind, Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process, Chemosphere, 235 (2019) 575–585.
  9. E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández-González, Advanced oxidation processes for the removal of antibiotics from water. An overview, Water, 12 (2020) 102, doi: 10.3390/w12010102.
  10. L. An, P.F. Xiao, Zero-valent iron/activated carbon microelectrolysis to activate peroxydisulfate for efficient degradation of cholrtetracycline in aqueous solution, RSC Adv., 10 (2020) 19401–19409.
  11. J.Y. Yao, Y. Yu, R.J. Qu, J. Chen, Z.L. Huo, F. Zhu, Z.Y. Wang, Fe-activated peroxymonosulfate enhances the degradation of dibutyl phthalate on ground quartz sand, Environ. Sci. Technol., 54 (2020) 9052–9061.
  12. X.X. Xu, J. Chen, R.J. Qu, Z.Y. Wang, Oxidation of tris(2-chloroethyl) phosphate in aqueous solution
    by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways, Chemosphere, 285 (2017) 833–843.
  13. J.Y. Yao, X.L. Zeng, Z.Y. Wang, Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: kinetic study and products identification, Chem. Eng. J., 330 (2017) 345–354.
  14. P.T. Hong, K. Jitae, T.M. Al Tahtamouni, N.L.M. Tri, H.-H. Kim, K.H. Cho, C. Lee, Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater, J. Water Process Eng., 33 (2020) 101037, doi: 10.1016/j.jwpe.2019.101037.
  15. Shad, J. Chen, R.J. Qu, A.A. Dar, M. Bin-Jumah, A.A. Allam, Z.Y. Wang, Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: kinetics, degradation products, and reaction pathways, Chem. Eng. J., 398 (2020) 125357, doi: 10.1016/j.cej.2020.125357.
  16. P.F. Xiao, L. An, D.D. Wu. The use of carbon materials in persulfate-based advanced oxidation processes: a review, New Carbon Mater., 35 (2020) 667–683.
  17. Z. Li, S.Q. Luo, Y. Yang, J.W. Chen, Highly efficient degradation of trichloroethylene in groundwater based on peroxymonosulfate activation by bentonite supported Fe/Ni bimetallic nanoparticle, Chemosphere, 216 (2019) 499–506.
  18. Z. Musajan, P.F. Xiao, J. Zhao, S. Han, Q.R. Wang, Preparation of cobalt ferrite nanoparticles and application as peroxymonosulfate activators for the removal of Congo red, Desal. Water Treat., 254 (2022) 274–286.
  19. M.M. Barbooti, H. Su, P. Punamiya, D. Sarkar, Oxytetracycline sorption onto Iraqi montmorillonite, Int. J. Environ. Sci. Technol., 11 (2014) 69–76.
  20. H. Li, Q. Jiang, R.Z. Li, B. Zhang, J.X. Zhang, Y. Zhang, Passivation of lead and cerium in soil facilitated by biocharsupported phosphate-doped ferrihydrite: mechanisms and microbial community evolution, J. Hazard. Mater., 436 (2022) 129090, doi: 10.1016/j.jhazmat.2022.129090.
  21. X.N. Li, Y. Song, M.Y. Jia, F. Wang, Y.R. Bian, X. Jiang, A review of researches on biochar adsorbing organic contaminants and its mechanism, Acta Pedol. Sin., 54 (2017) 1313–1325.
  22. Ouyang, J.C. Yan, L.B. Qian, Y. Chen, L. Han, A.Q. Su, W.Y. Zhang, H. Ni, M.F. Chen, Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate, Chemosphere, 184 (2017) 609–617.
  23. M.J. Xu, H.Y. Zhou, Z.L. Wu, N.W. Li, Z.K. Xiong, G. Yao, B. Lai, Efficient degradation of sulfamethoxazole by NiCo2O4 modified expanded graphite activated peroxymonosulfate: characterization, mechanism and degradation intermediates, J. Hazard. Mater., 399 (2020) 123103, doi: 10.1016/j.jhazmat.2020.123103.
  24. H. Zheng, J.G. Bao, Y. Huang, L.J. Xiang, Faheem, B.X. Ren, J.K. Du, M.N. Nadagouda, D.D. Dionysiou, Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation, Appl. Catal., B, 259 (2019) 118056, doi: 10.1016/j.apcatb.2019.118056.
  25. R. Ramachandran, T. Sakthivel, M.Z. Li, H.Q. Shan, Z.X. Xu, F. Wang, Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator, Chemosphere, 271 (2021) 128509, doi: 10.1016/j.chemosphere.2020.128509.
  26. Q.R. Wang, Y.X. Shi, S.Y. Lv, Y. Liang, P.F. Xiao, Peroxymonosulfate activation by tea residue biochar loaded with Fe3O4 for the degradation of tetracycline hydrochloride: performance and reaction mechanism, RSC Adv., 11 (2021) 18525–18538.
  27. J. Zhao, P.F. Xiao, S. Han, M. Zulhumar, D.D. Wu, Preparation of magnetic copper ferrite nanoparticle as peroxymonosulfate activating catalyst for effective degradation of levofloxacin, Water Sci. Technol., 85 (2022) 645–663.
  28. J. Liu, Z.W. Zhao, P.H. Shao, F.Y. Cui, Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation, Chem. Eng. J., 262 (2015) 854–861.
  29. M. Alhamd, T. Tabatabaie, I. Parseh, F. Amiri, N. Mengelizadeh, Magnetic CuNiFe2O4 nanoparticles loaded on multi-walled carbon nanotubes as a novel catalyst for peroxymonosulfate activation and degradation of reactive black 5, Environ. Sci. Pollut. Res., 28 (2021) 57099–57114.
  30. B. Wang, S.F. Li, H.B. Wang, S.H. Yao, Insight into the performance and mechanism of magnetic Ni0.5Cu0.5Fe2O4 in activating peroxydisulfate for ciprofloxacin degradation, Water Sci. Technol., 85 (2022) 1235–1249.
  31. Z.M. Ni, W.H. Yu, L.G. Wang, Z.Q. Guo, Z.H. Ge, Synthesis, characterization and nox absorption capability
    of Cu-Co-Al hydrotalcite-like compounds, J. Chem. Eng. Chin. Univ., 9 (2005) 223–227.
  32. J. Zhang, Y.F. Xu, G.G. Qian, Z.P. Xu, C. Chen, Q. Liu, Reinvestigation of dehydration and dehydroxylation of hydrotalcite-like compounds through combined TG-DTA-MS analyses, J. Phys. Chem. C, 114 (2010) 10768–10774.
  33. J.M. Bouzaid, R.L. Frost, W.N. Martens, Thermal decomposition of the composite hydrotalcites of iowaite and woodallite, J. Therm. Anal. Calorim., 89 (2007) 511–519.
  34. J. Lu, Y. Zhou, Y.B. Zhou, Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides, Chem. Eng. J., 422 (2021) 130126, doi: 10.1016/j.cej.2021.130126.
  35. H.Y. Zhou, L.D. Lai, Y.J. Wan, Y.L. He, G. Yao, B. Lai, Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine, Chem. Eng. J., 384 (2020) 123264, doi: 10.1016/j.cej.2019.123264.
  36. S.H. Yao, X.J. Chen, M.A. Gomez, X.C. Ma, H.B. Wang, S.Y. Zang, One-step synthesis of zerovalent-iron-biochar composites to activate persulfate for phenol degradation, Water Sci. Technol., 80 (2019) 1851–1860.
  37. Q.F. Wang, Y.S. Shao, N.Y. Gao, W.H. Chu, X. Shen, X. Lu, J.X. Chen, Y.P. Zhu, Degradation kinetics and mechanism of 2,4-Di-tert-butylphenol with UV/persulfate, Chem. Eng. J., 304 (2016) 201–208.
  38. Z.L. Wu, Y.P. Wang, Z.K. Xiong, Z.M. Ao, S.Y. Pu, G. Yao, B. Lai, Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine, Appl. Catal., B, 277 (2020) 119136, doi: 10.1016/j.apcatb.2020.119136.
  39. Y. Pang, Z. Tong, L. Tang, Y.N. Liu, K. Luo, Effect of humic acid on the degradation of methylene blue by peroxymonosulfate, Open Chem., 16 (2018) 401–406.
  40. Q.F. Zhong, Q.T. Lin, R.L. Huang, H.Y. Fu, X.F. Zhang, H.Y. Luo, R.B. Xiao, Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar, Chem. Eng. J., 380 (2020) 122608, doi: 10.1016/j.cej.2019.122608.
  41. J.Y. Cao, L.D. Lai, B. Lai, G. Yao, X. Chen, L.P. Song, Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism, Chem. Eng. J., 364 (2019) 45–56.
  42. H. Wang, W.W. Xu, X. Chen, Q.H. Yang, C. Shen, B.S. Zhang, Y.C. Lin, J. Sun, L.J. Zhang, Q.J. Zhang, Z.Y. Lu, L. Chen, Transformation from a non-radical to a radical pathway via the amorphization of a Ni(OH)2 catalyst as a peroxymonosulfate activator for the ultrafast degradation of organic pollutants, Nanoscale, 13 (2021) 7700–7708.
  43. M.X. Shen, Z.J. Huang, L.H. Qiu, Z.H. Chen, X.P. Xiao, X.J. Mo, L.H. Cui, Recycling of Fenton sludge containing Ni as an efficient catalyst for tetracycline degradation through peroxymonosulfate activation, J. Cleaner Prod., 268 (2020) 122174, doi: 10.1016/j.jclepro.2020.122174.
  44. Lyu, Y.C. Li, C. Fang, W. Feng, W.T. Sun, Q.H. Zhang, Enhanced peroxymonosulfate activation by NixCo1–xOOH for efficient catalytic oxidation of organic pollutants, Chem. Res. Chin. Univ., 35 (2019) 440–448.
  45. X.H. Liu, Y. Yang, H.P. Li, Z.G. Yang, Y. Fang, Visible light degradation of tetracycline using oxygen-rich titanium dioxide nanosheets decorated by carbon quantum dots, Chem. Eng. J., 408 (2021) 127259, doi: 10.1016/j.cej.2020.127259.
  46. S. Han, P.F. Xiao, L. An, D.D. Wu, Oxidative degradation of tetracycline using peroxymonosulfate activated by cobaltdoped pomelo peel carbon composite, Environ. Sci. Pollut. Res., 29 (2022) 21656–21669.