References

  1. S.J. Kashyap, R. Sankannavar, G.M. Madhu, Fluoride sources, toxicity and fluorosis management techniques – a brief review, J. Hazard. Mater. Lett., 2 (2021) 100033, doi: 10.1016/j.hazl.2021.100033.
  2. X. Meng, Y. Yao, Y. Ma, N. Zhong, S. Alphonse, J. Pei, Effect of fluoride in drinking water on the level of
    5-methylcytosine in human and rat blood, Environ. Toxicol. Pharmacol., 81 (2021) 103511, doi: 10.1016/j.etap.2020.103511.
  3. S. Budyanto, Y.L. Kuo, J.C. Liu, Adsorption and precipitation of fluoride on calcite nanoparticles: a spectroscopic study, Sep. Purif. Technol., 150 (2015) 325–331.
  4. N.A. Oladoja, S. Chen, J.E. Drewes, B. Helmreich, Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater, Chem. Eng. J., 281 (2015) 632–643.
  5. N. Ben Grich, A. Attour, M. Le Page Mostefa, S. Guesmi, M. Tlili, F. Lapicque, Fluoride removal from water by electrocoagulation: effect of the type of water and the experimental parameters, Electrochim. Acta, 316 (2019) 257–265.
  6. J. Shen, A. Schäfer, Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review, Chemosphere, 117 (2014) 679–691.
  7. P. Pillai, S. Dharaskar, S. Pandian, H. Panchal, Overview of fluoride removal from water using separation techniques, Environ. Technol. Innovation, 21 (2021) 101246, doi: 10.1016/j.eti.2020.101246.
  8. K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang, T. Xiao, Removal of fluoride from industrial wastewater by using different adsorbents: a review, Sci. Total Environ., 773 (2021) 145535, doi: 10.1016/j.scitotenv.2021.145535.
  9. J. He, Y. Yang, Z. Wu, C. Xie, K. Zhang, L. Kong, J. Liu, Review of fluoride removal from water environment by adsorption, J. Environ. Chem. Eng., 8 (2020) 104516, doi: 10.1016/j.jece.2020.104516.
  10. J. He, K. Zhang, S. Wu, X. Cai, K. Chen, Y. Li, B. Sun, Y. Jia, F. Meng, Z. Jin, L. Kong, J. Liu, Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water, J. Hazard. Mater., 303 (2016) 119–130.
  11. A. Jeyaseelan, K.M.M. Katubi, N.S. Alsaiari, M. Naushad, N. Viswanathan, Design and fabrication of sulfonic acid functionalized graphene oxide for enriched fluoride adsorption, Diamond Relat. Mater., 117 (2021) 108446, doi: 10.1016/j.diamond.2021.108446.
  12. S. Raghav, P. Jain, D. Kumar, Assembly of cerium impregnated pectin/silica–gel biopolymeric material for effective utilization for fluoride adsorption studies, Mater. Today Proc., 50 (2022) 273–281.
  13. R. Mudzielwana, M.W. Gitari, Removal of fluoride from groundwater using MnO2 bentonite-smectite rich clay soils composite, Groundwater Sustainable Dev., 14 (2021) 100623, doi: 10.1016/j.gsd.2021.100623.
  14. N.G. Corral-Capulin, A.R. Vilchis-Nestor, E. Gutiérrez-Segura, M. Solache-Ríos, Comparison of the removal behavior of fluoride by Fe3+ modified geomaterials from water, Appl. Clay Sci., 173 (2019) 19–28.
  15. R.W. Premathilaka, N.D. Liyanagedera, Fluoride in drinking water and nanotechnological approaches for eliminating excess fluoride, J. Nanotechnol., 2019 (2019) 2192383, doi: 10.1155/2019/2192383.
  16. C. Sairam Sundaram, N. Viswanathan, S. Meenakshi, Fluoride sorption by nano-hydroxyapatite/chitin composite, J. Hazard. Mater., 172 (2009) 147–151.
  17. G. Patel, U. Pal, S. Menon, Removal of fluoride from aqueous solution by CaO nanoparticles, Sep. Sci. Technol., 44 (2009) 2806–2826.
  18. J. Kang, B. Li, J. Song, D. Li, J. Yang, W. Zhan, D. Liu, Defluoridation of water using calcined magnesia/pullulan composite, Chem. Eng. J., 166 (2011) 765–771.
  19. X. Zhao, J. Wang, F. Wu, T. Wang, Y. Cai, Y. Shi, G. Jiang, Removal of fluoride from aqueous media by
    Fe3O4@Al(OH)3 magnetic nanoparticles, J. Hazard. Mater., 173 (2010) 102–109.
  20. Q. Liu, H. Guo, Y. Shan, Adsorption of fluoride on synthetic siderite from aqueous solution, J. Fluorine Chem., 131 (2010) 635–641.
  21. D. Zhang, H. Luo, L. Zheng, K. Wang, H. Li, Y. Wang, H. Feng, Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution, J. Hazard. Mater., 241–242 (2012) 418–426.
  22. M. Tariq, U. Farooq, M. Athar, M. Salman, M. Tariq, S. Shahida, Z.H. Farooqi, Lab-scale continuous flow studies for comparative biosorption of cadmium(II) on untreated and xanthated Ficus religiosa biomass, Water Environ. Res., 93 (2021) 2681–2695.
  23. K.H. Chu, Fixed-bed adsorption of chromium and the Weibull function, J. Hazard. Mater. Lett., 2 (2021) 100022, doi: 10.1016/j.hazl.2021.100022.
  24. G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a biosorption column, Adsorpt. Sci. Technol., 19 (2001) 25–43.
  25. I.O. Mazali, O.L. Alves, Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica), An. Acad. Bras. Cienc., 77 (2005) 25–31.
  26. R. Babou-Kammoe, S. Hamoudi, F. Larachi, K. Belkacemi, Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions, Can. J. Chem. Eng., 90 (2012) 26–33.
  27. A.S.S. Nila, Synthesis and XRD, FTIR studies of alumina nanoparticle using co-precipitation method, Int. J. Res. Appl. Sci. Eng. Technol., 6 (2018) 2493–2496.
  28. R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, Preparation and characterization of zero valente iron nanoparticles, Dig. J. Nanomater. Biostruct., 6 (2011) 1771–1776.
  29. B.W. Lee, Preparation of hydroxyapatite by aqueous precipitation from calcium carbonate and phosphoric acid, IOP Conf. Ser.: Mater. Sci. Eng., 1113 (2021) 012013.
  30. D. Moret-Fernández, M.V. López, Un Método sencillo para la estimacion de la porosidad de un agregado de suelo DE, S. Martínez, A. Sastre, Eds., Estud. En La Zo. No Saturada. XII ZNS’15 (2015) 3–6. Available at http://hdl.handle. net/10261/136762
  31. J.J. García-Sánchez, V. Martínez-Miranda, M. Solache-Ríos, Aluminum and calcium effects on the adsorption of fluoride ions by corrosion products, J. Fluorine Chem., 145 (2013) 136–140.
  32. H. Gheisari, E. Karamian, M. Abdellahi, A novel hydroxyapatite–hardystonite nanocomposite ceramic, Ceram. Int., 41 (2015) 5967–5975.
  33. A. Chandrasekar, S. Sagadevan, A. Dakshnamoorthy, Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique, Int. J. Phys. Sci., 8 (2013) 1639–1645.
  34. M. Yu, C. He, H. Zhang, R. Hou, J. Xue, Effect of different pretreatments on tribological properties of wheat straw/polypropylene composites, Nongye Jixie Xuebao = Trans. Chinese Soc. Agric. Mach., 44 (2013) 138–143.
  35. S. Mishra, G. Sen, Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications, Int. J. Biol. Macromol., 48 (2011) 688–694.
  36. S. Kalia, A. Kumar, B.S. Kaith, Sunn hemp cellulose graft copolymers polyhydroxybutyrate composites: morphological and mechanical studies, Adv. Mater. Lett., 2 (2011) 17–25.
  37. S.S. Saravanakumar, A. Kumaravel, T. Nagarajan, P. Sudhakar, R. Baskaran, Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark, Carbohydr. Polym., 92 (2013) 1928–1933.
  38. V.O.A. Tanobe, T.H.D. Sydenstricker, M. Munaro, S.C. Amico, A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica), Polym. Test., 24 (2005) 474–482.
  39. Y. Wang, X.-Y. Shen, Optimum plasma surface treatment of luffa fibers, J. Macromol. Sci. Part B Phys., 51 (2012) 662–670.
  40. WHO, Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, 2017, pp. 370–373. Available at https://www.ncbi.nlm.nih.gov/books/NBK442376/ (Accessed October 9, 2021).
  41. H.C. Thomas, Heterogeneous ion-exchange in a flowing system, J. Am. Chem. Soc., 66 (2002) 1664–1666.
  42. J.J. García-Sánchez, M. Solache-Ríos, V. Martínez-Miranda, R. Enciso-Perez, N.V. Arteaga-Larios,
    M.C. Ojeda-Escamilla, I. Rodríguez-Torres, Experimental study of the adsorption of fluoride by modified magnetite using a continuous flow system and numerical simulation, Process Saf. Environ. Prot., 109 (2017) 130–139.
  43. Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39 (2004) 599–613.
  44. X. Zhang, Y. Li, M. Wu, Y. Pang, Z. Hao, M. Hu, R. Qiu, Z. Chen, Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: kinetics, mechanism and column adsorption, Bioresour. Technol., 320 (2021) 124264, doi: 10.1016/j.biortech.2020.124264.
  45. D. Politi, D. Sidiras, Modified spruce sawdust for sorption of hexavalent chromium in batch systems and fixed-bed columns, Molecules, 25 (2020) 5156, doi: 10.3390/molecules25215156.
  46. L.M. Vera-Cabezas, D. Bermejo-Campos, M.F. Uguña-Rosas, N. García-Alvear, M. Flores-Zamora, D. Brazales, Modelado en columna de lecho fijo para la bioadsorción de Cd2+ Y Pb2+ con cáscara de cacao, Rev. Int. Contam. Ambient., 34 (2018) 611–620.
  47. J.J. García-Sánchez, M. Solache-Ríos, M.T. Alarcón-Herrera, V. Martínez-Miranda, Removal of fluoride from well water by modified iron oxides in a column system, Desal. Water Treat., 57 (2016) 2125–2133.
  48. C.S. Sundaram, N. Viswanathan, S. Meenakshi, Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies, J. Hazard. Mater., 155 (2008) 206–215.
  49. Y. Wang, N. Chen, W. Wei, J. Cui, Z. Wei, Enhanced adsorption of fluoride from aqueous solution onto nanosized hydroxyapatite by low-molecular-weight organic acids, Desalination, 276 (2011) 161–168.