References
- I. Novak, Photoelectron spectroscopy of organic pollutants:
chlorophenols, J. Electron. Spectrosc. Relat. Phenom., 239 (2020)
146919, doi: 10.1016/j.elspec.2019.146919.
- Z. Hao, H.T. Xu, Z.Y. Feng, C.C. Zhang, X. Zhou, Z.F. Wang,
J.H. Zheng, X.Q. Zou, Spatial distribution, deposition flux, and
environmental impact of typical persistent organic pollutants
in surficial sediments in the Eastern China Marginal Seas
(ECMSs), J. Hazard. Mater., 407 (2021) 124343, doi: 10.1016/j.jhazmat.2020.124343.
- E. Brillas, C.A. Martinez-Huitle, Decontamination of wastewaters
containing synthetic organic dyes by electrochemical methods.
An updated review, Appl. Catal., B, 166 (2015) 603–643.
- V.L. Prasanna, H. Mamane, V.K. Vadivel, D. Avisar, Ethanolactivated
granular aerogel as efficient adsorbent for
persistent organic pollutants from real leachate and hospital
wastewater, J. Hazard. Mater., 384 (2020) 121396, doi: 10.1016/j.jhazmat.2019.121396.
- A. Asghar, M.M. Bello, A.A. Raman, W.M.A.W. Daud,
A. Ramalingam, S.B. Zain, Predicting the degradation potential
of Acid blue 113 by different oxidants using quantum chemical
analysis, Heliyon, 5 (2019) e02396, doi: 10.1016/j.heliyon.2019.e02396.
- R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale,
L.F.R. Ferreira, M. Bilal, R. Chandra, R.N. Bharagava,
Ecotoxicological and health concerns of persistent coloring
pollutants of textile industry wastewater and treatment
approaches for environmental safety, J. Environ. Chem. Eng.,
9 (2021) 105012, doi: 10.1016/j.jece.2020.105012.
- P. Mandal, B.K. Dubey, A.K. Gupta, Review on landfill
leachate treatment by electrochemical oxidation: drawbacks,
challenges and future scope, Waste Manage., 69 (2017) 250–273.
- V. Vaezzadeh, M.W. Thomes, T. Kunisue, N.M. Tue, G. Zhang,
M.P. Zakaria, Y.A. Affendi, F.C. Yap, L.L. Chew, H.W. Teoh,
C.W. Lee, C.W. Bong, Examination of barnacles’ potential
to be used as bioindicators of persistent organic pollutants
in coastal ecosystem: a Malaysia case study, Chemosphere,
263 (2021) 128272, doi: 10.1016/j.chemosphere.2020.128272.
- P.E. Payandeh, N. Mehrdadi, P. Dadgar, Study of biological
methods in landfill leachate treatment, Open J. Ecol., 7 (2017)
568–580.
- S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin,
Landfill leachate treatment: review and opportunity, J. Hazard.
Mater., 150 (2008) 468–493.
- F. Di Capua, F. Adani, F. Pirozzi, G. Esposito, A. Giordano,
Air side-stream ammonia stripping in a thin film evaporator
coupled to high-solid anaerobic digestion of sewage sludge:
process performance and interactions, J. Environ. Manage.,
295 (2021) 113075, doi: 10.1016/j.jenvman.2021.113075.
- L. Miao, G. Yang, T. Tao, Y.Z. Peng, Recent advances in nitrogen
removal from landfill leachate using biological treatments – a
review, J. Environ. Manage., 235 (2019) 178–185.
- Y. Deng, N. Chen, W. Hu, H.S. Wang, P.J. Kuang, F.X. Chen,
C.P. Feng, Treatment of old landfill leachate by persulfate
enhanced electro-coagulation system: improving organic
matters removal and precipitates settling performance,
Chem. Eng. J., 424 (2021) 130262, doi: 10.1016/j.cej.2021.130262.
- M.A.M. Reshadi, A. Bazargan, G. Mckay, A review of the
application of adsorbents for landfill leachate treatment: focus
on magnetic adsorption, Sci. Total Environ., 731 (2020) 138863,
doi: 10.1016/j.scitotenv.2020.138863.
- Q.T. An, Z. Zhang, H.H. Su, X. Li, Review on landfill leachate
treatment methods, IOP Conf. Ser.: Earth Environ. Sci.,
565 (2020) 012038, doi: 10.1088/1755-1315/565/1/012038.
- B.P. Chang, A. Gupta, T.H. Mekonnen, Flame synthesis of
carbon nanoparticles from corn oil as a highly effective cationic
dye adsorbent, Chemosphere, 282 (2021) 131062,
doi: 10.1016/j.chemosphere.2021.131062.
- H.-Z. Li, Y.-N. Zhang, J.-Z. Guo, J.-Q. Lv, W.-W. Huang, B. Li,
Preparation of hydrochar with high adsorption performance
for methylene blue by co-hydrothermal carbonization of
polyvinyl chloride and bamboo, Bioresour. Technol., 337 (2021)
125442, doi: 10.1016/j.biortech.2021.125442.
- A. Fallahi, F. Rezvani, H. Asgharnejad, E.K. Nazloo, N. Hajinajaf,
B. Higgins, Interactions of microalgae-bacteria consortia for
nutrient removal from wastewater: a review, Chemosphere,
272 (2021) 129878, doi: 10.1016/j.chemosphere.2021.129878.
- P.R. Shukla, S. Wang, H. Sun, H.M. Ang, M. Tade, Activated
carbon supported cobalt catalysts for advanced oxidation of
organic contaminants in aqueous solution, Appl. Catal., B,
100 (2010) 529–534.
- F. Wei, D. Liao, Y. Lin, C. Hu, J.Q. Ju, Y.S. Chen, D.L. Feng,
Electrochemical degradation of reverse osmosis concentrate
(ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode,
Sep. Purif. Technol., 258 (2021) 118056, doi: 10.1016/j.
seppur.2020.118056.
- X. Liu, L. Min, X. Yu, Z. Zhou, L. Sha, S.T. Zhang, Changes
of photoelectrocatalytic, electrocatalytic and pollutant
degradation properties during the growth of β-PbO2 into black
titanium oxide nanoarrays, Chem. Eng. J., 417 (2021) 127996,
doi: 10.1016/j.cej.2020.127996.
- S. Boukhchina, H. Akrout, D. Berling, L. Bousselmi, Highly
efficient modified lead oxide electrode using a spin coating/electrode position mode on titanium for electrochemical
treatment of pharmaceutical pollutant, Chemosphere,
221 (2019) 356–365.
- D. Guo, Y.B. Guo, Y.X. Huang, Y.Y. Chen, X.C. Dong, H. Chen,
S.P. Li, Preparation and electrochemical treatment application
of Ti/Sb–SnO2-Eu&rGO electrode in the degradation of
clothianidin wastewater, Chemosphere, 265 (2021) 129126,
doi: 10.1016/j.chemosphere.2020.129126.
- S. Man, H. Bao, H. Yang, K. Xu, A.Q. Li, Y.T. Xie, Y. Jian,
W.J. Yang, Z.H. Mo, X.M. Li, Preparation and characterization
of Nano-SiC doped PbO2 electrode for degradation of toluene
diamine, J. Alloys Compd., 859 (2021) 157884, doi: 10.1016/j.jallcom.2020.157884.
- M. Pierpaoli, P. Jakobczyk, M. Sawczak, A. Luczkiewicz,
S. Fudala-Ksiazek, R. Bogdanowicz, Carbon nanoarchitectures
as high-performance electrodes for the electrochemical
oxidation of landfill leachate, J. Hazard. Mater., 401 (2021)
123407, doi: 10.1016/j.jhazmat.2020.123407.
- S. Chen, P. He, X. Wang, F. Xiao, P.C. Zhou, Q.H. He, L.P. Jia,
F.Q. Dong, H. Zhang, B. Jia, H.T. Liu, B. Tang,
Co/Sm-modified
Ti/PbO2 anode for atrazine degradation: effective electrocatalytic
performance and degradation mechanism, Chemosphere,
268 (2021) 128799, doi: 10.1016/j.chemosphere.2020.128799.
- M. Chen, X. Zhao, C. Wang, S. Pan, C. Zhang, Y.C. Wang,
Electrochemical oxidation of reverse osmosis concentrates
using macroporous Ti-ENTA/SnO2-Sb flow-through anode:
degradation performance, energy efficiency and toxicity
assessment, J. Hazard. Mater., 401 (2021) 123295,
doi: 10.1016/j.jhazmat.2020.123295.
- J. Cai, M. Zhou, X. Du, X. Xu, Enhanced mechanism of 2,4-dichlorophenoxyacetic
acid degradation by electrochemical
activation of persulfate on blue-TiO2 nanotubes anode, Sep. Purif.
Technol., 254 (2021) 117560, doi: 10.1016/j.seppur.2020.117560.
- W. Zhou, X. Meng, J. Gao, A.N. Alshawabkeh, Hydrogen
peroxide generation from O2 electroreduction for environmental
remediation: a state-of-the-art review, Chemosphere,
225 (2019) 588–607.
- J. Zhang, W. Zhou, L. Yang, Y.C. Chen, Y.Y. Hu, Co-N-doped
MoO2 modified carbon felt cathode for removal of EDTA-Ni
in electro-Fenton process, Environ. Sci. Pollut. Res., 25 (2018)
22754–22765.
- K. Zhu, J. Ouyang, J.M. Liu, Y.X. Zhu, Q. Zeng, Y.J. Cui,
Preparation and photocatalytic hydrogen evolution from water
of oxygen doped carbon nitride nanosheets, Chin. J. Inorg.
Chem., 35 (2019) 1005–1012.
- M.A. Radi, N. Nasirizadeh, M. Rohani-Moghadam, M. Dehghani,
The comparison of sonochemistry, electrochemistry and
sonoelectrochemistry techniques on decolorization of C.I.
Reactive Blue 49, Ultrason. Sonochem., 27 (2015) 609–615.
- M. Sharma, A. Halder, R. Vaish, Effect of Ce on piezo/photocatalytic effects of Ba0.9Ca0.1CexTi1–xO3 ceramics for dye/pharmaceutical waste water treatment, Mater. Res. Bull., 122
(2020) 110647, doi: 10.1016/j.materresbull.2019.110647.
- R. Li, X.K. Lu, B.B. Yan, N. Li, G.Y. Chen, Z.J. Cheng,
L.A. Hou, S.B. Wang, X.G. Duan, Sludge-derived biochar toward
sustainable peroxymonosulfate activation: regulation of active
sites and synergistic production of reaction oxygen species,
Chem. Eng. J., 440 (2022) 135897, doi: 10.1016/j.cej.2022.135897.
- Y. Yang, L.C. Kao, Y.Y. Liu, K. Sun, H.T. Yu, J.H. Guo, S.Y.H. Liou,
M.R. Hoffmann, Cobalt-doped black TiO2 nanotube array
as a stable anode for oxygen evolution and electrochemical
wastewater treatment, ACS Catal., 8 (2018) 4278–4287.
- L.Y. Wu, Q. Zhang, J.M. Hong, Z.Y. Dong, J. Wang, Degradation
of bisphenol A by persulfate activation via oxygen vacancy-rich
CoFe2O4–x, Chemosphere, 221 (2019) 412–422.
- J. Ding, L.J. Bu, Q.L. Zhao, F.T. Kabutey, L.L. Wei, D.D. Dionysiou,
Electrochemical activation of persulfate on BDD and DSA
anodes: electrolyte influence, kinetics and mechanisms in
the degradation of bisphenol A, J. Hazard. Mater., 388 (2020)
121789, doi: 10.1016/j.jhazmat.2019.121789.
- J. Cai, M. Zhou, Y. Pan, X.D. Du, X.Y. Lu, Extremely efficient
electrochemical degradation of organic pollutants with
co-generation of hydroxyl and sulfate radicals on blue-TiO2 nanotubes anode, Appl. Catal., B, 257 (2019) 117902,
doi: 10.1016/j.apcatb.2019.117902.
- J. Zuo, J. Zhu, M. Zhang, Q.M. Hong, J. Han, J.F. Liu, Synergistic
photoelectrochemical performance of La-doped RuO2-TiO2/Ti electrodes, Appl. Surf. Sci., 502 (2020) 144288, doi: 10.1016/j.apsusc.2019.144288.
- J. Li, J.F. Yan, G. Yao, Y.H. Zhang, X. Li, B. Lai, Improving
the degradation of atrazine in the three-dimensional (3D)
electrochemical process using CuFe2O4 as both particle electrode
and catalyst for persulfate activation, Chem. Eng. J., 361 (2019)
1317–1332.
- J.L. Wang, S.Z. Wang, Reactive species in advanced oxidation
processes: formation, identification and reaction mechanism,
Chem. Eng. J., 401 (2020) 126158, doi: 10.1016/j.cej.2020.126158.
- L.J. Bu, S.Q. Zhou, Z. Shi, L. Deng, N.Y. Gao, Removal of 2-MIB
and geosmin by electrogenerated persulfate: performance,
mechanism and pathways, Chemosphere, 168 (2017) 1309–1316.
- S.Q. Zhou, L.J. Bu, Y.H. Yu, X. Zou, Y.S. Zhang, A comparative
study of microcystin-LR degradation by electrogenerated
oxidants at BDD and MMO anodes, Chemosphere, 165 (2016)
381–387.
- A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang,
N.S. Marinkovic, P. Liu, A.I. Frenkel, R.R. Adzic, Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2, Nat. Mater.,
8 (2009) 325–330.
- L. Gan, Y. Wu, H. Song, C. Lu, S.P. Zhang, A.M. Li, Self-doped
TiO2 nanotube arrays for electrochemical mineralization of
phenols, Chemosphere, 226 (2019) 329–339.
- X. Li, Z.K. Kou, J. Wang, Manipulating interfaces of
electrocatalysts down to atomic scales: fundamentals,
strategies, and electrocatalytic applications, Small Methods,
5 (2020) 2001010, doi: 10.1002/smtd.202001010.
- F. Zahmatkeshani, M. Tohidi, Synthesis of SnO2, Zn-doped SnO2
and Zn2SnO4 nanostructure-based hierarchical architectures
by using deep eutectic precursors and their photocatalytic
application, Cryst. Eng. Commun., 21 (2019) 6758–6771.
- R.Z. Xie, X.Y. Meng, P.Z. Sun, J.F. Niu, W.J. Jiang, L. Bottomley,
D. Li, Y.S. Chen, J. Crittenden, Electrochemical oxidation of
ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene
resin-PbO2 electrode: reaction kinetics and mass transfer
impact, Appl. Catal., B, 203 (2017) 515–525.
- M.Z. Wu, L.J. Lu, Y.B. Yang, Y. Chang, R.X. Chen, Y. Li, J. Du,
C.Y. Tao, Z.H. Liu, Y.J. Liu, L. Gou, S.H. Pan, D. Ran, J. Li,
A triethanolamine-assisted fabrication of stable Sb doped-SnO2/Ti electrode for electrocatalytic oxidation of rhodamine
B, Colloids Surf., A, 634 (2021) 127976, doi: 10.1016/j.
colsurfa.2021.127976.
- A. Chen, S. Xia, Z. Ji, H.W. Lu, Insights into the origin of superhigh
oxygen evolution potential of Cu doped SnO2 anodes:
a theoretical study, Appl. Surf. Sci., 471 (2019) 149–153.
- C. Costentin, D.G. Nocera, C.N. Brodsky, Multielectron,
multisubstrate molecular catalysis of electrochemical reactions:
formal kinetic analysis in the total catalysis regime, Proc. Natl.
Acad. Sci. U.S.A., 114 (2017) 11303–11308.
- X.B. Qian, K.F. Peng, L. Xu, S.Y. Tang, W.L. Wang, M. Zhang,
J.F. Niu, Electrochemical decomposition of PPCPs on
hydrophobic Ti/SnO2-Sb/La-PbO2 anodes: relationship between
surface hydrophobicity and decomposition performance,
Chem. Eng. J., 429 (2022) 132309, doi: 10.1016/j.cej.2021.132309.
- L.J. Bu, S.M. Zhu, S.Q. Zhou, Degradation of atrazine by
electrochemically activated persulfate using BDD anode: role
of radicals and influencing factors, Chemosphere, 195 (2018)
236–244.
- H.R. Song, L.X. Yan, J. Jiang, J. Ma, Z.X. Zhang, J.M. Zhang,
P.X. Liu, T. Yang, Electrochemical activation of persulfates at
BDD anode: radical or non-radical oxidation?, Water Res.,
128 (2018) 393–401.
- N. Pueyo, M.P. Ormad, N. Miguel, P. Kokkinos, A. Ioannidi,
D. Mantzavinos, Z. Frontistis, Electrochemical oxidation of
butyl paraben on boron doped diamond in environmental
matrices and comparison with sulfate radical-AOP, J. Environ.
Manage., 269 (2020) 110783, doi: 10.1016/j.jenvman.2020.110783.
- J.J. Cai, M.H. Zhou, Y. Liu, A. Savall, K.G. Serrano, Indirect
electrochemical oxidation of
2,4-dichlorophenoxyacetic acid
using electrochemically-generated persulfate, Chemosphere,
204 (2018) 163–169.
- Y.U. Shin, H.Y. Yoo, Y.Y. Ahn, M.S. Kim, K. Lee, S. Yu, C. Lee,
K. Cho, H.I. Kim, J. Lee, Electrochemical oxidation of organics
in sulfate solutions on boron-doped diamond electrode:
multiple pathways for sulfate radical generation, Appl. Catal.,
B, 254 (2019) 156–165.
- P.Z. Duan, D.D. Chen, X. Hu, Tin dioxide decorated on
Ni-encapsulated nitrogen-doped carbon nanotubes for anodic
electrolysis and persulfate activation to degrade cephalexin:
mineralization and degradation pathway, Chemosphere,
269 (2021) 128740, doi: 10.1016/j.chemosphere.2020.128740.
- S. Dimitriadou, Z. Frontistis, A. Petala, G. Bampos,
D. Mantzavinos, Carbocatalytic activation of persulfate
for the removal of drug diclofenac from aqueous matrices,
Catal. Today, 355 (2020) 937–944.
- Y.-J. Shih, C.-P. Huang, Y.-H. Chan, Y.-H. Huang, Electrochemical
degradation of oxalic acid over highly reactive nano-textured γ-
and α-MnO2/carbon electrode fabricated by KMnO4 reduction
on loofah sponge-derived active carbon, J. Hazard. Mater.,
379 (2019) 120759, doi: 10.1016/j.jhazmat.2019.120759.
- M. Ferreira, I. Kuzniarska-Biernacka, A.M. Fonseca, I.C. Neves,
O.S.G.P. Soares, M.F.R. Pereira, J.L. Figueiredo, P. Parpot,
Electrochemical oxidation of amoxicillin on carbon nanotubes
and carbon nanotube supported metal modified electrodes,
Catal. Today, 357 (2020) 322–331.
- X. Duan, W. Wang, Q. Wang, X.Y. Sui, N. Li, L.M. Chang,
Electrocatalytic degradation of perfluoroocatane sulfonate
(PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite
anode: electrode characterization, degradation mechanism
and toxicity, Chemosphere, 260 (2020) 127587,
doi: 10.1016/j.chemosphere.2020.127587.
- Y.Y. Ahn, H. Bae, H.I. Kim, S.H. Kim, J.H. Kim, S.G. Lee, J. Lee,
Surface-loaded metal nanoparticles for peroxymonosulfate
activation: efficiency and mechanism reconnaissance,
Appl. Catal., B, 241 (2019) 561–569.
- A. Farhat, J. Keller, S. Tait, J. Radjenovic, Removal of persistent
organic contaminants by electrochemically activated sulfate,
Environ. Sci. Technol., 49 (2015) 14326–14333.
- Z. Li, Y.Q. Sun, Y. Yang, Y.T. Han, T.S. Wang, J.W. Chen,
D.C.W. Tsang, Comparing biochar- and bentonite-supported
Fe-based catalysts for selective degradation of antibiotics:
mechanisms and pathway, Environ. Res., 183 (2020) 109156,
doi: 10.1016/j.envres.2020.109156.
- M. Ding, W. Chen, H. Xu, Z. Shen, T. Lin, K. Hu, Q. Kong,
G. Yang, Z.L. Xie, Heterogeneous Fe2CoTi3O10-MXene composite
catalysts: synergistic effect of the ternary transition metals in
the degradation of
2,4-dichlorophenoxyacetic acid based on
peroxymonosulfate activation, Chem. Eng. J., 378 (2019) 122177,
doi: 10.1016/j.cej.2019.122177.
- L. Chen, C. Lei, Z. Li, B. Yang, X.W. Zhang, L.C. Lei,
Electrochemical activation of sulfate by BDD anode in
basic medium for efficient removal of organic pollutants,
Chemosphere, 210 (2018) 516–523.
- X. Wu, X. Song, H. Chen, J.G. Yu, Treatment of phenolic
compound wastewater using CuFe2O4/Al2O3 particle electrodes
in a three-dimensional electrochemical oxidation system,
Environ. Technol., 42 (2020) 4393–4404.
- H. Song, L. Yan, J. Ma, J. Jiang, G.Q. Cai, W.J. Zhang,
Z.X. Zhang, J.M. Zhang, T. Yang, Nonradical oxidation from
electrochemical activation of peroxydisulfate at Ti/Pt anode:
efficiency, mechanism and influencing factors, Water Res,
116 (2017) 182–193.
- S. Garcia-Segura, E.V. Dos Santos, C.A. Martinez-Huitle, Role of
sp3/sp2 ratio on the electrocatalytic properties of boron-doped
diamond electrodes: a mini review, Electrochem. Commun.,
59 (2015) 52–55.
- H. Lee, H.J. Lee, J. Jeong, J. Lee, N.B. Park, C. Lee, Activation
of persulfates by carbon nanotubes: oxidation of organic
compounds by nonradical mechanism, Chem. Eng. J.,
266 (2015) 28–33.
- Y. Wang, M. Liu, X. Zhao, D. Cao, T. Guo, B. Yang, Insights into
heterogeneous catalysis of peroxymonosulfate activation by
boron-doped ordered mesoporous carbon, Carbon, 135 (2018)
238–247.
- X. Chen, W.D. Oh, T.T. Lim, Graphene- and CNTs-based
carbocatalysts in persulfates activation: material design and
catalytic mechanisms, Chem. Eng. J., 354 (2018) 941–976.
- C. Sun, T. Chen, Q. Huang, M.X. Zhan, X.D. Li, J.H. Yan,
Activation of persulfate by CO2-activated biochar for improved
phenolic pollutant degradation: performance and mechanism,
Chem. Eng. J., 380 (2020) 122519, doi: 10.1016/j.cej.2019.
122519.
- S. Liu, Z. Zhang, F. Huang, Y.Z. Liu, L. Feng, J. Jiang,
L.Q. Zhang, F. Qi, C. Liu, Carbonized polyaniline activated
peroxymonosulfate (PMS) for phenol degradation: role of PMS
adsorption and singlet oxygen generation, Appl. Catal., B,
286 (2021) 119921, doi: 10.1016/j.apcatb.2021.119921.
- H. Wang, W. Guo, B. Liu, Q.L. Wu, H.C. Luo, Q. Zhao, Q.S. Si,
F. Sseguya, N.Q. Ren, Edge-nitrogenated biochar for efficient
peroxydisulfate activation: an electron transfer mechanism,
Water Res., 160 (2019) 405–414.
- H. Zhou, D. Lu, S. Fang, L. Chang, Y.C. Chen, Y.Y. Hu, Q.J. Luo,
Prompting direct single electron transfer to produce nonradical
1O2/H* by electro-activating peroxydisulfate process
with core-shell cathode, J. Environ. Manage., 287 (2021) 112294,
doi: 10.1016/j.jenvman.2021.112294.
- Y.F. Song, J.M. Liu, F. Ge, X. Huang, Y. Zhang, H.H. Ge,
X.J. Meng, Y.Z. Zhao, Influence of Nd-doping on the degradation
performance of Ti/Sb-SnO2 electrode, J. Environ. Chem. Eng.,
9 (2021) 105409, doi: 10.1016/j.jece.2021.105409.
- G. Sun, C. Wang, W. Gu, Q.J. Song, A facile electroless
preparation of Cu, Sn and Sb oxides coated Ti electrode for
electrocatalytic degradation of organic pollutants, Sci. Total
Environ., 772 (2021) 144908, doi: 10.1016/j.scitotenv.2020.144908.
- S. Yu, C. Hao, Z. Li, R.R. Zhang, Y. Dang, J.J. Zhu, Promoting
the electrocatalytic performance of PbO2 nanocrystals via
incorporation of Y2O3 nanoparticles: degradation application
and electrocatalytic mechanism, Electrochim. Acta, 369 (2021)
137671, doi: 10.1016/j.electacta.2020.137671.
- G.R. Wang, Y. Liu, J.W. Ye, Z.F. Lin, X.J. Yang, Electrochemical
oxidation of methyl orange by a Magnéli phase Ti4O7
anode, Chemosphere, 241 (2020) 125084, doi: 10.1016/j.chemosphere.2019.125084.
- X. Zhang, D. Shao, W. Lyu, G.Q. Tan, H.J. Ren, Utilizing
discarded SiC heating rod to fabricate SiC/Sb-SnO2 anode
for electrochemical oxidation of wastewater, Chem. Eng. J.,
361 (2019) 862–873.
- Y. Xia, G. Wang, L. Guo, Q.Z. Dai, X.J. Ma, Electrochemical
oxidation of Acid Orange 7 azo dye using a PbO2 electrode:
parameter optimization, reaction mechanism and toxicity
evaluation, Chemosphere, 241 (2020) 125010, doi: 10.1016/j.chemosphere.2019.125010.
- N. Jiang, Y.C. Wang, Q.L. Zhao, Z.F. Ye, Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT
red water, Environ. Pollut., 259 (2020) 113801, doi: 10.1016/j.
envpol.2019.113801.
- S. Thomas, R. Sreekanth, V.A. Sijumon, U.K. Aravind,
C.T. Aravindakumar, Oxidative degradation of Acid Red 1 in
aqueous medium, Chem. Eng. J., 244 (2014) 473–482.
- X. Florenza, A.M.S. Solano, F. Centellas, C.A. Martinez-Huitle,
E. Brillas, S. Garcia-Segura, Degradation of the azo dye Acid
Red 1 by anodic oxidation and indirect electrochemical
processes based on Fenton’s reaction chemistry. Relationship
between decolorization, mineralization and products,
Electrochim. Acta, 142 (2014) 276–288.
- W.Y. Wu, Z.H. Huang, T.T. Lim, Recent development of mixed
metal oxide anodes for electrochemical oxidation of organic
pollutants in water, Appl. Catal., A, 480 (2014) 58–78.
- G.A. McCarver, T. Rajeshkumar, K.D. Vogiatzis, Computational
catalysis for metal-organic frameworks: an overview, Coord.
Chem. Rev., 436 (2021) 213777, doi: 10.1016/j.ccr.2021.213777.
- C. Shao, F. Zhang, X. Li, J.H. Zhang, Y.S. Jiang, H.Y. Cheng,
K.G. Zhu, Influence of Cr doping on the oxygen evolution
potential of SnO2/Ti and Sb-SnO2/Ti electrodes, J. Electroanal.
Chem., 832 (2019) 436–443.
- W. Fu, G.-J. Xia, Y. Zhang, J.H. Hu, Y.-G. Wang, J. Li, X.Y. Li, B. Li,
Using general computational chemistry strategy to unravel the
reactivity of emerging pollutants: an example of sulfonamide
chlorination, Water Res., 202 (2021) 117391, doi: doi: 10.1016/j.watres.2021.117391.
- M. Behrens, F. Studt, I. Kasatkin, S. Kuehl, M. Haevecker,
F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.L. Kniep,
The active site of methanol synthesis over Cu/ZnO/Al2O3
industrial catalysts, Science, 336 (2012) 893–897.
- R.G. González-Huerta, G. Ramos-Sánchez, P.B. Balbuena,
Oxygen evolution in co-doped RuO2 and IrO2: experimental
and theoretical insights to diminish electrolysis over-potential,
J. Power Sources, 268 (2014) 69–76.
- L.D. Chen, M. Urushihara, K. Chan, J.K. Norskov, Electric field
effects in electrochemical CO2 reduction, ACS Catal., 6 (2016)
7133–7139.
- D.V. Vasilyev, P.J. Dyson, The role of organic promoters in
the electroreduction of carbon dioxide, ACS Catal., 11 (2021)
1392–1405.
- C.C. Chang, M.S. Ku, Role of high-index facet Cu(711) surface
in controlling the C2 selectivity for CO2 reduction reaction — a
DFT study, J. Phys. Chem. C, 125 (2021) 10919–10925.
- W. Wang, X. Liu, J. Pérez-Ríos, Complex reaction network
thermodynamic and kinetic autoconstruction based on Ab
initio statistical mechanics: a case study of O2 activation on Ag4
clusters, J. Phys. Chem. A, 125 (2021) 5670–5680.
- S.G. Moore, D.R. Wheeler, Chemical potential perturbation:
a method to predict chemical potentials in periodic
molecular simulations, J. Chem. Phys., 134 (2011) 114514,
doi: 10.1063/1.3561865.
- H. Lin, D.G. Truhlar, QM/MM: what have we learned, where
are we, and where do we go from here?, Theor. Chem. Acc.,
117 (2006) 185–199.
- K. Schwarz, R. Sundararaman, The electrochemical interface
in first-principles calculations, Surf. Sci. Rep., 75 (2020) 100492,
doi: 10.1016/j.surfrep.2020.100492.
- X. Shi, S. Back, T.M. Gill, S. Siahrostami, X.L. Zheng,
Electrochemical synthesis of H2O2 by two-electron water
oxidation reaction, Chem, 7 (2021) 38–63.