References

  1. A. Chen, M. Wang, F. Luo, M. Zhang, Z. Tian, X. Sui, New progress in research on high-salt industrial wastewater treatment technology, Environ. Dev., (2019) 99+101 (in Chinese).
  2. T. Panswad, C. Anan, Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds, Water Res., 33 (1999) 1165–1172.
  3. F. Hua, Application of bio-augmentation technology in the treatment of refinery wastewater, Ind. Water Treat., (2020) 105–108 (in Chinese).
  4. X. Zhang, Y. Wang, H. Peng, Membrane distillation technology for treatment of petrochemical high-salinity wastewater, Mod. Chem. Ind., (2015) 153–157+159 (in Chinese).
  5. W. Liu, J. Howell, T. Arnot, J. Scott, A novel extractive membrane bioreactor for treating biorefractory organic pollutants in the presence of high concentrations of inorganics: application to a synthetic acidic effluent containing high concentrations of chlorophenol and salt, J. Membr. Sci., 181 (2001) 127–140.
  6. O. Miyawaki, T. Inakuma, Development of progressive freeze concentration and its application: a review, Food Bioprocess Technol., 14 (2021) 39–51.
  7. L. Liu, O. Miyawaki, K. Nakamuran, Progressive freezeconcentration of model liquid food, Food Sci. Technol. Int. Tokyo, 3 (1997) 348–352.
  8. A.K. Olowofoyeku, D. Gil, A. Kramer, Freeze concentration of apple juice by rotational unidirectional cooling, Int. J. Refrig., 3 (1980) 93–97.
  9. M. Aider, D. de Halleux, Cryoconcentration technology in the bio-food industry: principles and applications, LWT Food Sci. Technol., 42 (2009) 679–685.
  10. D. Weber, J. Hubbuch, Raman spectroscopy as a process analytical technology to investigate biopharmaceutical freeze concentration processes, Biotechnol. Bioeng., 118 (2021) 4708–4719.
  11. W. Gao, Y. Shao, Freeze concentration for removal of pharmaceutically active compounds in water, Desalination, 249 (2009) 398–402.
  12. W. Yuan, L. Zhang, Y. Chang, H. Ma, P. Fu, H. Wang, J. Li, Treatment of biofuel production wastewater by a combined freezing method for resources recovery and waste reduction, Sci. Total Environ., 774 (2021) 145173, doi: 10.1016/j.scitotenv.2021.145173.
  13. T. Htira, C. Cogne, E. Gagniere, D. Mangin, Experimental study of industrial wastewater treatment by freezing, J. Water Process Eng., 23 (2018) 292–298.
  14. L. Li, C. Liu, W. Gu, Y. Xu, J. Tao, Research progress and problems in desalination and utilization of sea ice in Bohai Sea, Mar. Sci. Bull., (2012) 105–112 (in Chinese).
  15. C. Li, Theoretical and Experimental Investigation on Centrifugal Desalting of Sea ice, Tianjin University, 2010 (in Chinese).
  16. S. Moharramzadeh, S.K. Ong, J. Alleman, K.S. Cetin, Parametric study of the progressive freeze concentration for desalination, Desalination, 510 (2021) 115077, doi: 10.1016/j.desal.2021.115077.
  17. W. Cao, C. Beggs, I.M. Mujtaba, Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy, Desalination, 355 (2015) 22–32.
  18. B. Kalista, H. Shin, J. Cho, A. Jang, Current development and future prospect review of freeze desalination, Desalination, 447 (2018) 167–181.
  19. D.G. Randall, J. Nathoo, A succinct review of the treatment of reverse osmosis brines using freeze crystallization, J. Water Process Eng., 8 (2015) 186–194.
  20. C. Luo, W. Chen, W. Han, Experimental study on factors affecting the quality of ice crystal during the freezing concentration for the brackish water, Desalination, 260 (2010) 231–238.
  21. K. Wang, D. Zhang, N. Mei, J. Zhang, Y. Li, H. Si, H. Yuan, Inhibition effect of adsorption on brine pockets formation during seawater freeze desalination, Desalination, 526 (2022) 115507, doi: 10.1016/j.desal.2021.115507.
  22. W.F. Weeks, S.F. Ackley, The Growth, Structure, and Properties of Sea Ice, N. Untersteiner, Ed., Geophys. Sea Ice, Springer US, Boston, MA, 1986, pp. 9–164. Available at https://doi.org/10.1007/978-1-4899-5352-0_2.
  23. S.M. Badawy, Experimental and kinetic modeling study of multistage freezing-melting process and salt rejection of seawater, Cold Reg. Sci. Technol., 194 (2022) 103457, doi: 10.1016/j.coldregions.2021.103457.
  24. K. Medjani, Numerical simulation of the formation of brine pockets during the freezing of the NaCl-H2O compound from above, Int. Commun. Heat Mass Transfer, 23 (1996) 917–928.
  25. P. Chen, L. Wang, P. Song, X. Chen, Y. Yin, Y. Liu, L. Cai, L. Zhang, Recovering olaquindox and decreasing COD and salt concentrations in antibiotic wastewater by multiple freezethaw processes and crystallization, J. Cleaner Prod., 225 (2019) 248–255.
  26. W. Feng, Y. Yin, M. de Lourdes Mendoza, L. Wang, P. Chen, Y. Liu, L. Cai, L. Zhang, Oil recovery from waste cutting fluid via the combination of suspension crystallization and freeze-thaw processes, J. Cleaner Prod., 172 (2018) 481–487.
  27. T. Liu, Y. Zhang, Y. Tang, X. Wang, C. Zhao, N. Wang, Y. Liu, Application of progressive freeze concentration in the removal of Ca2+ from wastewater, J. Water Process Eng., 46 (2022) 102619, doi: 10.1016/j.jwpe.2022.102619.
  28. X. Li, K. Cui, M. Xi, K. Xu, Z. Guo, Y. Chen, W. Xu, Treatment performance and mechanism of high-salt and
    high-concentration organic wastewater using multi-stage freezing technology, Chin. J. Environ. Eng., 14 (2020) 652–661 (in Chinese).
  29. Y. Xu, W. Gu, W. Chen, X. Xu, G. Zhang, P. Shi, N. Li, W. Cui, Influence of posture of desalination of sea ice in solid state by gravitation, Mar. Environ. Sci., (2007) 28–32 (in Chinese).
  30. S. Zhang, Study on Transportation and Desalination by centrifugation of Sea Ice, Tianjin University, 2008 (in Chinese).
  31. Y. Xu, N. Li, W. Gu, P. Shi, W. Cui, A study on the technology of sea ice desalination in solid state by freezing and melting through temperature control, J. Basic Sci. Eng., (2006) 470–478 (in Chinese).
  32. H. Yang, H. Li, S. Zhang, Y. Yao, Saline water desalination investigation on the basis of freezing process, Technol. Water Treat., (2016) 57–61 (in Chinese).
  33. H. Yang, Z. Zhan, Y. Yao, Z. Sun, Influence of gravity-induced brine drainage on seawater ice desalination, Desalination, 407 (2017) 33–40.
  34. HJ 828-2017, Water Quality-Determination of the Chemical Oxygen Demand—Dichromate Method, Industry Standard of China, 2017 (in Chinese).
  35. HJ/T 399-2007, Water Quality-Determination of the Chemical Oxygen Demand-Fast Digestion-Spectrophotometric Method, Industry Standard of China, 2007 (in Chinese).
  36. H. Yang, Y. Yao, H. Li, Experimental study on the effect of freezing seawater concentration factors, Technol. Water Treat., (2016) 68–72, doi: 10.16796/j.cnki.1000-3770.2016.09.014.
  37. GB 8978-1996, Integrated Wastewater Discharge Standard, Standards Press of China, 1996 (in Chinese).
  38. GB/T 31962-2015, Wastewater Quality Standards for Discharge to Municipal Swears, Standards Press of China, 2015 (in Chinese).
  39. J. Ren, J. Zhang, C. Si, N. Wang, B. Qin, C. Ma, B. Zhang, J. Li, Y. Li, Test verification of the standard compilation of “energysaving monitoring for refrigeration storage system” in Beijing, Int. J. Photoenergy, 2022 (2022), doi: 10.1155/2022/9428536.
  40. P. Wang, T. Chung, A conceptual demonstration of freeze desalination–membrane distillation (FD–MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy, Water Res., 46 (2012) 4037–4052.
  41. W. Gu, Y. Lin, Y. Xu, S. Yuan, J. Tao, L. Li, C. Liu, Sea ice desalination under the force of gravity in low temperature environments, Desalination, 295 (2012) 11–15.
  42. K. Wang, D. Zhang, N. Mei, J. Zhang, Y. Li, H. Si, H. Yuan, Inhibition effect of adsorption on brine pockets formation during seawater freeze desalination, Desalination, 526 (2022) 115507, doi: 10.1016/j.desal.2021.115507.