References

  1. M. Mohsenzadeh, L. Aye, P. Christopher, Development and experimental analysis of an innovative self-cleaning low vacuum hemispherical floating solar still for low-cost desalination, Energy Convers. Manage., 251 (2022) 114902, doi: 10.1016/j.enconman.2021.114902.
  2. D. Purnachandrakumar, G. Mittal, R.K. Sharma, D.B. Singh, S. Tiwari, H. Sinhmar, Review on performance assessment of solar stills using computational fluid dynamics (CFD), Environ. Sci. Pollut. Res., 29 (2022) 38673–38714.
  3. F.A. Essa, Thermal Desalination Systems: From Traditionality to Modernity and Development, V. Steffen, Ed., Distillation Processes, InTechOpen, London, 2022, doi: 10.5772/intechopen.101128.
  4. D. Singh, S. Gautam, A. Kumar, Analytical study of photovoltaic thermal compound parabolic concentrator active double slope solar distiller with a helical coiled heat exchanger using CuO nanoparticles, Desal. Water Treat., 233 (2021) 30–51.
  5. R. Kumar, D.B. Singh, A. Dewangan, V.K. Singh, N. Kumar, Performance of evacuated tube solar collector integrated solar desalination unit-a review, Desal. Water Treat., 230 (2021) 92–115.
  6. M. Al-Dabbas, A. Alahmer, A. Mamkagh, M.R. Gomaa, Desalination and water treatment productivity enhancement of the solar still by using water cooled finned condensing pipe, Desal. Water Treat., 213 (2021) 35–43.
  7. F.A. Essa, W.H. Alawee, S.A. Mohammed, A.S. Abdullah, Z.M. Omara, Enhancement of pyramid solar distiller performance using reflectors, cooling cycle, and dangled cords of wicks, Desalination, 506 (2021) 115019, doi: 10.1016/j.desal.2021.115019.
  8. Z. Zhu, H. Zheng, Q. Wang, M. Chen, Z. Li, B. Zhang, The study of a novel light concentration and direct heating solar distillation device embedded underground, Desalination, 447 (2018) 102–119.
  9. Q. Wang, Z. Zhu, G. Wu, X. Zhang, H. Zheng, Energy analysis and experimental verification of a solar freshwater selfproduced ecological film floating on the sea, Appl. Energy, 224 (2018) 510–526.
  10. Q. Wang, Z. Zhu, H. Zheng, Investigation of a floating solar desalination film, Desalination, 447 (2018) 43–54.
  11. Z. Zhu, Q. Wang, Z. Li, M. Chen, L. Wang, H. Zheng, Performance research and comparison of integrated passive solar-concentrated stills buried in soil: with/without heat recovery, Energy Convers. Manage., 256 (2022) 115400, doi: 10.1016/j.enconman.2022.115400.
  12. P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Solar-driven interfacial evaporation, Nat. Energy, 3 (2018) 1031–1041.
  13. L. Zhang, Z. Xu, L. Zhao, B. Bhatia, Y. Zhong, S. Gong, E.N. Wang, Passive, high-efficiency thermally-localized solar desalination, Energy Environ. Sci., 14 (2021) 1771–1793.
  14. H. Zheng, C. Feng, Y. Su, R. Wang, X. Xue, Performance analysis and experimental investigation of a novel trough daylight concentration and axial transmission system, Sol. Energy, 97 (2013) 200–207.
  15. T. Tao, Z. Hongfei, H. Kaiyan, A. Mayere, A new trough solar concentrator and its performance analysis, Sol. Energy, 85 (2011) 198–207.
  16. T. Arunkumar, D. Denkenberger, R. Velraj, R. Sathyamurthy, H. Tanaka, K. Vinothkumar, Experimental study on a parabolic concentrator assisted solar desalting system, Energy Convers. Manage., 105 (2015) 665–674.
  17. M. Elashmawy, An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still, Desalination, 411 (2017) 1–8.
  18. Y. Zhao, O. Ramadan, H. Kong, X. Xue, S. Riffat, H. Zheng, Performance analysis and optimization of a novel highefficiency flower-inspired solar still, Energy Convers. Manage., 251 (2022) 114878, doi: 10.1016/j.enconman.2021.114878.