References

  1. Ministry of Industry and Technological Development, The Ten Years Strategy for Renovation of Egyptian Industry and its Implementation Plan, Ministry of Industry and Technological development, Cairo, 2001.
  2. E. Iloms, O.O. Ololade, H.J.O. Ogola, R. Selvarajan, Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa, Int. J. Environ. Res. Public Health, 17 (2020) 1096, doi: 10.3390/ijerph17031096.
  3. N. Ungureanu, V. Vlăduț, G. Voicu, Water scarcity and wastewater reuse in crop irrigation, Sustainability 12 (2020) 9055, doi: 10.3390/su12219055.
  4. H. Cui, X. Huang, Z. Yu, P. Chen, X. Cao, Application progress of enhanced coagulation in water treatment, RSC Adv., 10 (2020) 20231–20244.
  5. A. Barrero-Fernández, R. Aguado, A. Moral, C. Brindley, M. Ballesteros, Applications of cellulose-based agents for flocculation processes: a bibliometric analysis, Cellulose, 28 (2021) 9857–9871.
  6. M. Yateh, Y. Lu, H. Wang, F. Li, Enhanced chemical oxygen demand removal in the pre-treatment of sludge wastewater by coagulation, Open Access Lib. J., 7 (2020) 1–15, doi: 10.4236/oalib.1106948.
  7. S.R. Qasim, G. Zhu, Wastewater Treatment and Reuse Theory and Design Examples,
    Volume 2: Post-Treatment, Reuse, and Disposal, 1st ed., CRC Press, Boca Raton, London, New York, 2017.
  8. E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández-González, Advanced oxidation processes for the removal of antibiotics from water. An overview, Water, 12 (2020) 102, doi: 10.3390/w12010102.
  9. L.G. Covinich, D.I. Bengoechea, R.J. Fenoglio, M.C. Area, Advanced oxidation processes for wastewater treatment in the pulp and paper industry: a review, Am. J. Environ. Eng., 4 (2014) 56–70.
  10. E. Friedler, D.F. Chavez, Y. Alfiya, Y. Gilboa, A. Gross, Impact of suspended solids and organic matter on chlorine and UV disinfection efficiency of greywater, Water, 13 (2021) 214, doi: 10.3390/w13020214.
  11. M.I. Pariente, R. Molina, J.A. Melero, J.Á. Botas, F. Martínez, Intensified-Fenton process for the treatment of phenol aqueous solutions, Water Sci. Technol., 71 (2014) 359–365.
  12. C. Lyu, D. Zhou, J. Wang, Removal of multi-dye wastewater by the novel integrated adsorption and Fenton oxidation process in a fluidized bed reactor, Environ. Sci. Pollut. Res., 23 (2016) 20893–20903.
  13. N. Nordin, L.-N. Ho, S.-A. Ong, A.H. Ibrahim, Y.-S. Wong, S.-L. Lee, Y.-S. Oon, Y.-L. Oon, Influence of amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process, Environ. Sci. Pollut. Res., 24 (2017) 23331–23340.
  14. G.K. Akkaya, H.S. Erkan, E. Sekman, S. Top, H. Karaman, M.S. Bilgili, G.O. Engin, Modeling and optimizing Fenton and electro-Fenton processes for dairy wastewater treatment using response surface methodology, Int. J. Environ. Sci. Technol., 16 (2018) 2343–2358.
  15. N. Beyazıt, H. Karaca, Performance comparison of UV, UV/H2O2, UV/Fe2+, H2O2/Fe2+, UV/H2O2/Fe2+ processes in the removal of COD and color from textile wastewater, J. Sci. Rep.-A, 45 (2020) 236–252.
  16. Retrieved September 15, 2022. Available at http://www.newcities.gov.eg/english/New_Communities/badr/default.aspx
  17. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C., 2005.
  18. T. Sriwiriyarat, S. Jangkorn, Evaluation of waste activated sludge as a coagulant aid for the treatment of industrial wastewater containing mixed surfactants, J. Environ. Sci. Health A, 44 (2009) 507–514.
  19. Z. Othman, S. Bhatia, A.L. Ahmad, Influence of the settleability parameters for palm oil mill effluent pretreatment by using Moringa oleifera seeds as an environmental friendly coagulant, Mater. Sci. Eng., 5 (2011) 332–340.
  20. M.Y.D. Alazaiza, A. Albahnasawi, G.A.M. Ali, M.J.K. Bashir, D.E. Nassani, T. Al Maskari, S.S. Abu Amr, M.S.S. Abujazar, Application of natural coagulants for pharmaceutical removal from water and wastewater:
    a review, Water, 14 (2022) 140, doi: 10.3390/w14020140.
  21. O.S. Amuda, I.A. Amoo, Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment, J. Hazard. Mater., 141 (2007) 778–783.
  22. M.J. Brandt, K.M. Johnson, A.J. Elphinston, D.D. Ratnayaka, Chapter 12 – Chemical Storage, Dosing and Control, M.J. Brandt, K.M. Johnson, A.J. Elphinston, D.D. Ratnayaka, Eds., Twort’s Water Supply, Butterworth-Heinemann, 2017, pp. 513–552.
  23. A. Ahmad, S. Wong, T. Teng, A. Zuhairi, Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater, Chem. Eng. J., 137 (2008) 510–517.
  24. Metcalf and Eddy Inc., G. Tchobanoglous, F.L. Burton, R. Tsuchihashi, H.D. Stensel. Wastewater Engineering: Treatment and Resource Recovery, 5th ed., McGraw-Hill Professional, 2013.
  25. S. You, J. Teng, Anaerobic decolorization bacteria for the treatment of azo dye in a sequential anaerobic and aerobic membrane bioreactor, J. Taiwan Inst. Chem. Eng., 40 (2009) 500–504.
  26. F. Hai, K. Yamamoto, F. Nakajima, K. Fukushi, Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment, Water Res., 45 (2011) 2199–2206.
  27. N.K. Singh, A. Bhatia, A.A. Kazmi, Effect of intermittent aeration strategies on treatment performance and microbial community of an IFAS reactor treating municipal waste water, Environ. Technol., 38 (2017) 2866–2876.
  28. S. Yang, S. Xu, Y. Zhou, A. Mohammed, N.J. Ashbolt, Y. Liu, The importance of integrated fixed film activated sludge reactor and intermittent aeration in nitritation-ANAMMOX systems: understanding reactor optimization for lagoon supernatant treatment, Int. Biodeterior. Biodegrad., 149 (2020) 104938, doi: 10.1016/j.ibiod.2020.104938.
  29. D. Pryce, Z. Kapelan, F.A. Memon, A comparative evaluation of the sustainability of alternative aeration strategies in biological wastewater treatment to support net-zero future, J. Cleaner Prod., 374 (2022) 134005, doi: 10.1016/j.jclepro.2022.134005.
  30. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  31. A. Tolpa, M. Elsamadony, H. Afifi, M. Gar Alalm, Investigation of operational conditions for the removal of methylene blue by Fenton reaction, J. Eng. Res., 3 (2019) 55–58.
  32. Y. Hua, S. Wang, J. Xiao, C. Cui, C. Wang, Preparation and characterization of Fe3O4/gallic acid/graphene oxide magnetic nanocomposites as highly efficient Fenton catalysts, RSC Adv., 7 (2017) 28979–28986.
  33. M.B. Johnson, M. Mehrvar, Treatment of actual winery wastewater by Fenton-like process: optimization to improve organic removal, reduce inorganic sludge production and enhance co-treatment at municipal wastewater treatment facilities, Water, 14 (2021) 39, doi: 10.3390/w14010039.
  34. L.M.G. Pereira, M.E. de Oliveira Ferreira, N.N. de Brito, I. Conceição Ostroski, Cosmetic wastewater primary treatment by Fenton process and final polishing adsorption, Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 24 (2020) 13, doi: 10.5902/2236117040701.
  35. O. Amuda, A. Alade, Coagulation/flocculation process in the treatment of abattoir wastewater, Desalination, 196 (2006) 22–31.
  36. F. El-Gohary, A. Tawfik, U. Mahmoud, Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater, Desalination, 252 (2010) 106–112.
  37. J. Gregory, J. Duan, Hydrolyzing metal salts as coagulants, Pure Appl. Chem., 73 (2001) 2017–2026.
  38. Y. Xu, T. Chen, F. Cui, W. Shi, Effect of reused alum-humic-flocs on coagulation performance and floc characteristics formed by aluminum salt coagulants in humic-acid water, Chem. Eng. J., 287 (2016) 225–232.
  39. S. Gautam, G. Saini. Use of natural coagulants for industrial wastewater treatment, Global J. Environ. Sci. Manage., 6 (2020) 553–578.
  40. M. Aguilar, J. Sáez, M. Lloréns, A. Soler, J. Ortuño, V. Meseguer, A. Fuentes, Improvement of coagulation–flocculation process using anionic polyacrylamide as coagulant aid, Chemosphere, 58 (2005) 47–56.
  41. V. Krishnan, D. Ahmad, J. Jeru, Influence of COD:N:P ratio on dark greywater treatment using a sequencing batch reactor, J. Chem. Technol. Biotechnol., 83 (2008) 756–762.
  42. M. Pirsaheb, A. Dargahi, A. Zinatizadeh, R. Khamutian, M. Mashirpanahi, H. Golestanifar, Evaluating the performance of extended aeration process in treatment of hospital wastewater and determining its kinetic coefficients – case study: wastewater treatment plant of Quds Hospital in Sanandaj. J. Environ. Sci. Technol., 19 (2017) 1–11.
  43. M. Jeworski, E. Heinzle, Combined chemical-biological treatment of wastewater containing refractory pollutants, Biotechnol. Annu. Rev., 6 (2000) 163–96.
  44. M. Badawy, F. El-Gohary, T. Gad-Allah, M. Ali, Treatment of landfill leachate by Fenton process: parametric and kinetic studies, Desal. Water Treat., 51 (2013) 7323–7330.
  45. O.A. Afolabi, K.O. Adekalu, D.A. Okunade, Electro-Fenton treatment process for brewery wastewater: effects of oxidant concentration and reaction time on BOD and COD removal efficiency, J. Eng. Appl. Sci., 69 (2022) 42, doi: 10.1186/s44147-022-00089-1.
  46. F. Ji, C. Li, J. Zhang, L. Deng, Efficient decolorization of dye pollutants with LiFe(WO4)2 as a reusable heterogeneous Fentonlike catalyst, Desalination, 269 (2011) 284–290.
  47. S. Jagadevan, P. Dobson, I. Thompson, Harmonisation of chemical and biological process in development of a hybrid technology for treatment of recalcitrant metalworking fluid, Bioresour. Technol., 102 (2011) 8783–8789.
  48. S. Abu Amr, H. Aziz, New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process, Waste Manage., 32 (2012) 1693–1698.
  49. D. Hermosilla, M. Cortijo, C. Huang, Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes, Sci. Total Environ., 407 (2009) 3473–3481.
  50. G.K. Türkay, H. Kumbur, Investigation of amoxicillin removal from aqueous solution by Fenton and photocatalytic oxidation processes, Kuwait J. Sci., 46 (2019) 85–93.
  51. R. Pulicharla, S. Brar, T. Rouissi, S. Auger, P. Drogui, M. Verma, R. Surampalli, Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferrosonication, Ultrason. Sonochem., 34 (2017) 332–342.
  52. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  53. S. Wang, J. Ma, B. Liu, Y. Jiang, H. Zhang, Degradation characteristics of secondary effluent of domestic wastewater by combined process of ozonation and biofiltration, J. Hazard. Mater., 150 (2008) 109–114.
  54. N. Silva, Integration Strategies for Wastewater Treatment: Advanced Oxidation Processes and Conventional Technologies, Ph.D. Thesis, 2016.
  55. T. Kurniawan, W. Lo, Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment, Water Res., 43 (2009) 4079–4091.
  56. F. El-Gohary, M. Badawy, M. El-Khateeb, A. El-Kalliny, Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment, J. Hazard. Mater., 162 (2009) 1536–1541.
  57. J. Buljan, I. Kral, Introduction to Treatment of Tannery Effluent, United Nations Industrial Development Organization (UNIDO), Vienna, 2011.