References
- C.H. Liu, W. Cai, M.Y. Zhai, Z. Guang, C.X. Zhang, Z.G. Jiang,
Decoupling of wastewater eco-environmental damage and
China’s economic development, Sci. Total Environ., 789 (2021)
147980, doi: 10.1016/j.scitotenv.2021.147980.
- J.B. Zhang, H.C. Wang, Y.T. Shao, G.H. Liu, L. Qi, W.Y. Dang,
J.L. Yuan, Y.H. Li, Z.H. Xia, Analysis on common problems of the
wastewater treatment industry in urban China, Chemosphere,
291 (2021) 132875, doi: 10.1016/j.chemosphere.2021.132875.
- Ministry of Housing and Urban Rural Development of the
People’s Republic of China, Statistical Yearbook of Urban and
Rural Construction 2020, China Scientific Research Press,
Beijing, China, 2021.
- K.S.V.S. Pujitha, K. Venkatesh, Forecasting the construction
cost by using unit based estimation model, Mater. Today Proc.,
33 (2020) 613–619.
- H.L. Jiang, H.X. Zhang, X.H. Shi, Refined production simulation
and operation cost evaluation for power system with high
proportion of renewable energy, Energy Rep., 8 (2022) 108–118.
- Y. Xu, H.Y. Li, Y. Li, X.Q. Zheng, C.X. Zhang, P.Z. Chen, Q. Li,
L. Tan, Systematically assess the advancing and limiting factors
of using the multi-soil-layering system for treating rural
sewage in China: from the economic, social, and environmental
perspectives, J. Environ. Manage., 312 (2022) 114912,
doi: 10.1016/j.jenvman.2022.114912.
- Y.K. Yang, K.R. Kim, R.R. Kou, Y.P. Li, J. Fu, L. Zhao, H.B. Liu,
Prediction of effluent quality in a wastewater treatment plant
by dynamic neural network modeling, Process Saf. Environ.
Prot., 158 (2022) 515–524.
- Y.J. Xie, L. Zeng, P. Wang, X.D. Wu, T.J. Feng, Water cost for water
purification: renewability assessment of a typical wastewater
treatment plant in China, J. Cleaner Prod., 349 (2022) 131474,
doi: 10.1016/j.jclepro.2022.131474.
- J. Yeo, S.S. Chopra, D. von Eiff, S. Jeong, L. Zhang, A.K. An,
An integrated techno-economic analysis on wastewater
reclamation in Hong Kong: a comprehensive cost – benefit
analysis with life cycle assessment, J. Cleaner Prod., 357 (2022)
131838, doi: 10.1016/j.jclepro.2022.131838.
- D. Torregrossa, U. Leopold, F. Hernandez-Sancho, J. Hansen,
Machine learning for energy cost modelling in wastewater
treatment plants, J. Environ. Manage., 223 (2018) 1061–1067.
- X.L. Zheng, H. Nguyen, X.N. Bui, Exploring the relation
between production factors, ore grades, and life of mine for
forecasting mining capital cost through a novel cascade forward
neural network-based salp swarm optimization model, Resour.
Policy, 74 (2021) 102300, doi: 10.1016/j.resourpol.2021.102300.
- X.P. Men, H.G. Zhan, W.Y. Tan, A hybrid method of GA and
BP for short-term economic dispatch of hydrothermal power
systems, Math. Comput. Simul., 51 (2000) 341–348.
- G. Durai, R. Ramsenthil, M. Dilipkumar, Artificial neural
network based modeling for the degradation of tannery
wastewater in sequential batch reactor, Desal. Water Treat.,
251 (2022) 27–34.
- R. Saravanathamizhan, K.H. Vardhan, D.G. Prakash,
N. Balasubramanian, RSM and ANN modeling for electrooxidation
of simulated wastewater using CSTER, Desal. Water
Treat., 55 (2015) 1445–1452.
- L. Godo-Pla, P. Emiliano, F. Valero, M. Poch, G. Sin, H. Monclus,
Predicting the oxidant demand in full-scale drinking water
treatment using an artificial neural network: uncertainty and
sensitivity analysis, Process Saf. Environ. Prot., 125 (2019)
317–327.
- J.O.B. Lira, H.G. Riella, N. Padoin, C. Soares, Computational
fluid dynamics (CFD), artificial neural network (ANN) and
genetic algorithm (GA) as a hybrid method for the analysis and
optimization of
micro-photocatalytic reactors: NOx abatement
as a case study, Chem. Eng. J., 431 (2022) 133771, doi: 10.1016/j.cej.2021.133771.
- E. Maleki, N. Maleki, Artificial neural network modeling of
Pt/C cathode degradation in PEM fuel cells, J. Electron. Mater.,
45 (2016) 3822–3834.
- N. Maleki, E. Maleki, Modeling of Cathode Pt/C Electrocatalyst
Degradation and Performance of a PEMFC Using Artificial
Neural Network, ICEMIS ‘15: Proceedings of The International
Conference on Engineering & MIS 2015, 2015, pp. 1–8,
doi: 10.1145/2832987.2833000.
- E. Szatyowicz, I. Skoczko, P. Ofman, Using artificial neural
networks for modeling wastewater treatment in small
wastewater treatment plant, Rocz. Ochr. Sr., 18 (2016) 493–506.
- G.M. Wang, Q.S. Jia, M.C. Zhou, J. Bi, J.F. Qiao, A. Abusorrah,
Artificial neural networks for water quality soft-sensing in
wastewater treatment: a review, Artif. Intell. Rev., 55 (2022)
565–587.
- E. Malekia, M.J. Mirzaali, M. Guagliano, S. Bagherifard,
Analyzing the mechano-bactericidal effect of nano-patterned
surfaces on different bacteria species, Surf. Coat. Technol.,
408 (2021) 126782, doi: 10.1016/j.surfcoat.2020.126782.
- S. Amin, Backpropagation – Artificial Neural Network
(BP-ANN): understanding gender characteristics of older
driver accidents in West Midlands of United Kingdom,
Saf. Sci., 122 (2020) 104539, doi: 10.1016/j.ssci.2019.104539.
- M. Khayet, C. Cojocaru, Artificial neural network modeling
and optimization of desalination by air gap membrane
distillation, Sep. Purif. Technol., 86 (2012) 171–182.
- N. Malek, S. Kashanian, E. Maleki, M. Nazari, A novel enzyme
based biosensor for catechol detection in water samples using
artificial neural network, Biochem. Eng. J., 128 (2017) 1–11.
- M. Bagheri, S.A. Mirbagheri, Z. Bagheri, A.M. Kamarkhani,
Modeling and optimization of activated sludge bulking for a
real wastewater treatment plant using hybrid artificial neural
networks-genetic algorithm approach, Process Saf. Environ.
Prot., 95 (2015) 12–25.
- B.W. Zhang, S.M. Guo, H. Jin, Production forecast analysis of
BP neural network based on Yimin lignite supercritical water
gasification experiment results, Energy, 246 (2022) 123306,
doi: 10.1016/j.energy.2022.123306.
- E. Maleki, Artificial neural networks application for modeling
of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy, IOP Conf. Ser.: Mater. Sci. Eng., 103 (2015)
012034, doi: 10.1088/1757-899X/103/1/012034.
- E. Maleki, O. Unal, K.R Kashyzadeh, Fatigue behavior
prediction and analysis of shot peened mild carbon steels, Int. J.
Fatigue, 116 (2018) 48–67.
- D.C. Jin, P. Wang, Z.H. Bai, X.X. Wang, H. Peng, R. Qi,
Z.S. Yu, G.Q. Zhuang, Analysis of bacterial community in
bulking sludge using culture-dependent and -independent
approaches, J. Environ. Sci., 23 (2011) 1880–1887.
- L.L. Xu, Research on computer interactive optimization design
of power system based on genetic algorithm, Energy Rep.,
7 (2021) 1–13.
- F. Momenbeik, M. Roosta, A.A. Nikoukar, Simultaneous
microemulsion liquid chromatographic analysis of fat-soluble
vitamins in pharmaceutical formulations: optimization using
genetic algorithm, J. Chromatogr. A, 1217 (2010) 3770–3773.
- V. Ganesan, M. Sobhana, G. Anuradha, P. Yellamma, O.R. Devi,
K.B. Prakash, J. Naren, Quantum inspired meta-heuristic
approach for optimization of genetic algorithm, Comput. Electr.
Eng., 94 (2021) 107356, doi: 10.1016/j.compeleceng.2021.107356.
- B. Liu, S.C. Li, L.C. Nie, J. Wang, X. L, Q.S. Zhang, 3D resistivity
inversion using an improved Genetic Algorithm based on
control method of mutation direction, J. Appl. Geophys.,
87 (2012) 1–8.
- U. Kilic, K. Ayan, U. Arifoglu, Optimizing reactive power flow
of HVDC systems using genetic algorithm, Int. J. Electr. Power
Energy Syst., 55 (2014) 1–12.
- C.G. Wen, C.S. Lee, Development of a cost function for
wastewater treatment systems with fuzzy regression, Fuzzy
Sets Syst., 106 (1999) 143–153.
- C.-Q. Guo, Y.-L. Cui, Improved solute transport and pollutant
degradation model of free water surface constructed
wetlands considering significant linear correlation between
model parameters, Bioresour. Technol., 327 (2021) 124817,
doi: 10.1016/j.biortech.2021.124817.
- R.J. Brook, M. Stone, F.Y. Chan, L.K. Chan, Cross-validatory
graduation, Insur. Math. Econ., 7 (1988) 59–66.
- Z.J. Guan, R. Li, J.T. Jiang, B. Song, Y.X. Gong, L. Zhen, Data
mining and design of electromagnetic properties of Co/FeSi
filled coatings based on genetic algorithms optimized artificial
neural networks (GA-ANN), Composites, Part B, 226 (2021)
109383, doi: 10.1016/j.compositesb.2021.109383.
- Y. Shin, Z. Kim, J. Yu, G. Kim, S. Hwang, Development of NOx
reduction system utilizing artificial neural network (ANN) and
genetic algorithm (GA), J. Cleaner Prod., 232 (2019) 1418–1429.
- C. Baskar, N. Nesakuma, J.B.B. Rayappan, M. Doraipandian,
A framework for analysing E-Nose data based on fuzzy set
multiple linear regression: paddy quality assessment, Sens.
Actuators, A, 267 (2017) 200–209.
- D. Pandelara, W. Kristjanpoller, K. Michell, M.C. Minutolo,
A fuzzy regression causality approach to analyze relationship
between electrical consumption and GDP, Energy, 239 (2022)
122459, doi: 10.1016/j.energy.2021.122459.
- A.J. Prieto, A. Silva, J. de Brito, J.M. Macias-Bernal, F.J. Alejandre,
Multiple linear regression and fuzzy logic models applied
to the functional service life prediction of cultural heritage,
J. Cult. Heritage, 27 (2017) 20–35.
- M.M. Nasrabadi, E. Nasrabadi, A.R. Nasrabady, Fuzzy linear
regression analysis: a multi-objective programming approach,
Appl. Math. Comput., 163 (2005) 245–251.