References

  1. C.H. Liu, W. Cai, M.Y. Zhai, Z. Guang, C.X. Zhang, Z.G. Jiang, Decoupling of wastewater eco-environmental damage and China’s economic development, Sci. Total Environ., 789 (2021) 147980, doi: 10.1016/j.scitotenv.2021.147980.
  2. J.B. Zhang, H.C. Wang, Y.T. Shao, G.H. Liu, L. Qi, W.Y. Dang, J.L. Yuan, Y.H. Li, Z.H. Xia, Analysis on common problems of the wastewater treatment industry in urban China, Chemosphere, 291 (2021) 132875, doi: 10.1016/j.chemosphere.2021.132875.
  3. Ministry of Housing and Urban Rural Development of the People’s Republic of China, Statistical Yearbook of Urban and Rural Construction 2020, China Scientific Research Press, Beijing, China, 2021.
  4. K.S.V.S. Pujitha, K. Venkatesh, Forecasting the construction cost by using unit based estimation model, Mater. Today Proc., 33 (2020) 613–619.
  5. H.L. Jiang, H.X. Zhang, X.H. Shi, Refined production simulation and operation cost evaluation for power system with high proportion of renewable energy, Energy Rep., 8 (2022) 108–118.
  6. Y. Xu, H.Y. Li, Y. Li, X.Q. Zheng, C.X. Zhang, P.Z. Chen, Q. Li, L. Tan, Systematically assess the advancing and limiting factors of using the multi-soil-layering system for treating rural sewage in China: from the economic, social, and environmental perspectives, J. Environ. Manage., 312 (2022) 114912, doi: 10.1016/j.jenvman.2022.114912.
  7. Y.K. Yang, K.R. Kim, R.R. Kou, Y.P. Li, J. Fu, L. Zhao, H.B. Liu, Prediction of effluent quality in a wastewater treatment plant by dynamic neural network modeling, Process Saf. Environ. Prot., 158 (2022) 515–524.
  8. Y.J. Xie, L. Zeng, P. Wang, X.D. Wu, T.J. Feng, Water cost for water purification: renewability assessment of a typical wastewater treatment plant in China, J. Cleaner Prod., 349 (2022) 131474, doi: 10.1016/j.jclepro.2022.131474.
  9. J. Yeo, S.S. Chopra, D. von Eiff, S. Jeong, L. Zhang, A.K. An, An integrated techno-economic analysis on wastewater reclamation in Hong Kong: a comprehensive cost – benefit analysis with life cycle assessment, J. Cleaner Prod., 357 (2022) 131838, doi: 10.1016/j.jclepro.2022.131838.
  10. D. Torregrossa, U. Leopold, F. Hernandez-Sancho, J. Hansen, Machine learning for energy cost modelling in wastewater treatment plants, J. Environ. Manage., 223 (2018) 1061–1067.
  11. X.L. Zheng, H. Nguyen, X.N. Bui, Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model, Resour. Policy, 74 (2021) 102300, doi: 10.1016/j.resourpol.2021.102300.
  12. X.P. Men, H.G. Zhan, W.Y. Tan, A hybrid method of GA and BP for short-term economic dispatch of hydrothermal power systems, Math. Comput. Simul., 51 (2000) 341–348.
  13. G. Durai, R. Ramsenthil, M. Dilipkumar, Artificial neural network based modeling for the degradation of tannery wastewater in sequential batch reactor, Desal. Water Treat., 251 (2022) 27–34.
  14. R. Saravanathamizhan, K.H. Vardhan, D.G. Prakash, N. Balasubramanian, RSM and ANN modeling for electrooxidation of simulated wastewater using CSTER, Desal. Water Treat., 55 (2015) 1445–1452.
  15. L. Godo-Pla, P. Emiliano, F. Valero, M. Poch, G. Sin, H. Monclus, Predicting the oxidant demand in full-scale drinking water treatment using an artificial neural network: uncertainty and sensitivity analysis, Process Saf. Environ. Prot., 125 (2019) 317–327.
  16. J.O.B. Lira, H.G. Riella, N. Padoin, C. Soares, Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of
    micro-photocatalytic reactors: NOx abatement as a case study, Chem. Eng. J., 431 (2022) 133771, doi: 10.1016/j.cej.2021.133771.
  17. E. Maleki, N. Maleki, Artificial neural network modeling of Pt/C cathode degradation in PEM fuel cells, J. Electron. Mater., 45 (2016) 3822–3834.
  18. N. Maleki, E. Maleki, Modeling of Cathode Pt/C Electrocatalyst Degradation and Performance of a PEMFC Using Artificial Neural Network, ICEMIS ‘15: Proceedings of The International Conference on Engineering & MIS 2015, 2015, pp. 1–8, doi: 10.1145/2832987.2833000.
  19. E. Szatyowicz, I. Skoczko, P. Ofman, Using artificial neural networks for modeling wastewater treatment in small wastewater treatment plant, Rocz. Ochr. Sr., 18 (2016) 493–506.
  20. G.M. Wang, Q.S. Jia, M.C. Zhou, J. Bi, J.F. Qiao, A. Abusorrah, Artificial neural networks for water quality soft-sensing in wastewater treatment: a review, Artif. Intell. Rev., 55 (2022) 565–587.
  21. E. Malekia, M.J. Mirzaali, M. Guagliano, S. Bagherifard, Analyzing the mechano-bactericidal effect of nano-patterned surfaces on different bacteria species, Surf. Coat. Technol., 408 (2021) 126782, doi: 10.1016/j.surfcoat.2020.126782.
  22. S. Amin, Backpropagation – Artificial Neural Network (BP-ANN): understanding gender characteristics of older driver accidents in West Midlands of United Kingdom, Saf. Sci., 122 (2020) 104539, doi: 10.1016/j.ssci.2019.104539.
  23. M. Khayet, C. Cojocaru, Artificial neural network modeling and optimization of desalination by air gap membrane distillation, Sep. Purif. Technol., 86 (2012) 171–182.
  24. N. Malek, S. Kashanian, E. Maleki, M. Nazari, A novel enzyme based biosensor for catechol detection in water samples using artificial neural network, Biochem. Eng. J., 128 (2017) 1–11.
  25. M. Bagheri, S.A. Mirbagheri, Z. Bagheri, A.M. Kamarkhani, Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach, Process Saf. Environ. Prot., 95 (2015) 12–25.
  26. B.W. Zhang, S.M. Guo, H. Jin, Production forecast analysis of BP neural network based on Yimin lignite supercritical water gasification experiment results, Energy, 246 (2022) 123306, doi: 10.1016/j.energy.2022.123306.
  27. E. Maleki, Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy, IOP Conf. Ser.: Mater. Sci. Eng., 103 (2015) 012034, doi: 10.1088/1757-899X/103/1/012034.
  28. E. Maleki, O. Unal, K.R Kashyzadeh, Fatigue behavior prediction and analysis of shot peened mild carbon steels, Int. J. Fatigue, 116 (2018) 48–67.
  29. D.C. Jin, P. Wang, Z.H. Bai, X.X. Wang, H. Peng, R. Qi, Z.S. Yu, G.Q. Zhuang, Analysis of bacterial community in bulking sludge using culture-dependent and -independent approaches, J. Environ. Sci., 23 (2011) 1880–1887.
  30. L.L. Xu, Research on computer interactive optimization design of power system based on genetic algorithm, Energy Rep., 7 (2021) 1–13.
  31. F. Momenbeik, M. Roosta, A.A. Nikoukar, Simultaneous microemulsion liquid chromatographic analysis of fat-soluble vitamins in pharmaceutical formulations: optimization using genetic algorithm, J. Chromatogr. A, 1217 (2010) 3770–3773.
  32. V. Ganesan, M. Sobhana, G. Anuradha, P. Yellamma, O.R. Devi, K.B. Prakash, J. Naren, Quantum inspired meta-heuristic approach for optimization of genetic algorithm, Comput. Electr. Eng., 94 (2021) 107356, doi: 10.1016/j.compeleceng.2021.107356.
  33. B. Liu, S.C. Li, L.C. Nie, J. Wang, X. L, Q.S. Zhang, 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction, J. Appl. Geophys., 87 (2012) 1–8.
  34. U. Kilic, K. Ayan, U. Arifoglu, Optimizing reactive power flow of HVDC systems using genetic algorithm, Int. J. Electr. Power Energy Syst., 55 (2014) 1–12.
  35. C.G. Wen, C.S. Lee, Development of a cost function for wastewater treatment systems with fuzzy regression, Fuzzy Sets Syst., 106 (1999) 143–153.
  36. C.-Q. Guo, Y.-L. Cui, Improved solute transport and pollutant degradation model of free water surface constructed wetlands considering significant linear correlation between model parameters, Bioresour. Technol., 327 (2021) 124817, doi: 10.1016/j.biortech.2021.124817.
  37. R.J. Brook, M. Stone, F.Y. Chan, L.K. Chan, Cross-validatory graduation, Insur. Math. Econ., 7 (1988) 59–66.
  38. Z.J. Guan, R. Li, J.T. Jiang, B. Song, Y.X. Gong, L. Zhen, Data mining and design of electromagnetic properties of Co/FeSi filled coatings based on genetic algorithms optimized artificial neural networks (GA-ANN), Composites, Part B, 226 (2021) 109383, doi: 10.1016/j.compositesb.2021.109383.
  39. Y. Shin, Z. Kim, J. Yu, G. Kim, S. Hwang, Development of NOx reduction system utilizing artificial neural network (ANN) and genetic algorithm (GA), J. Cleaner Prod., 232 (2019) 1418–1429.
  40. C. Baskar, N. Nesakuma, J.B.B. Rayappan, M. Doraipandian, A framework for analysing E-Nose data based on fuzzy set multiple linear regression: paddy quality assessment, Sens. Actuators, A, 267 (2017) 200–209.
  41. D. Pandelara, W. Kristjanpoller, K. Michell, M.C. Minutolo, A fuzzy regression causality approach to analyze relationship between electrical consumption and GDP, Energy, 239 (2022) 122459, doi: 10.1016/j.energy.2021.122459.
  42. A.J. Prieto, A. Silva, J. de Brito, J.M. Macias-Bernal, F.J. Alejandre, Multiple linear regression and fuzzy logic models applied to the functional service life prediction of cultural heritage, J. Cult. Heritage, 27 (2017) 20–35.
  43. M.M. Nasrabadi, E. Nasrabadi, A.R. Nasrabady, Fuzzy linear regression analysis: a multi-objective programming approach, Appl. Math. Comput., 163 (2005) 245–251.