References

  1. A.A. Keller, M.J. Blunt, P.V. Roberts, Behavior of nonaqueous phase liquids in fractured porous media under two-phase flow conditions, Transp. Porous Media, 38 (2000) 189–203.
  2. J.W. Roy, J.E. Smith, R.W. Gillham, Laboratory evidence of natural remobilization of multi-component DNAPL pools due to dissolution, J. Contam. Hydrol., 74 (2004) 145–161.
  3. M.O. Rivett, R.M. Allen-King, A controlled field experiment on groundwater contamination
    by a multi-component DNAPL: dissolved-plume retardation, J. Contam. Hydrol., 66 (2003) 117–146.
  4. R.G. McLaren, E.A. Sudicky, Y.J. Park, W.A. Illman, Numerical simulation of DNAPL emissions and remediation in a fractured dolomitic aquifer, J. Contam. Hydrol., 136–137 (2012) 56–71.
  5. Y.C. Lee, T.S. Kwon, J.S. Yang, J.W. Yang, Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion, J. Hazard. Mater., 140 (2007) 340–345.
  6. P.P. Brahma, T.C. Harmon, The effect of multi-component diffusion on NAPL dissolution from spherical ternary mixtures, J. Contam. Hydrol., 67 (2003) 43–60.
  7. L. Liu, U. Maier, P. Grathwohl, S.B. Haderlein, Contaminant mass transfer from NAPLs to water studied in a continuously stirred flow-through reactor, J. Environ. Eng., 138 (2012) 826–832.
  8. J.A. Van Leeuwen, N. Hartog, J. Gerritse, C. Gallacher, R. Helmus, O. Brock, J.R. Parsons, S.M. Hassanizadeh, The dissolution and microbial degradation of mobile aromatic hydrocarbons from a Pintsch gas tar DNAPL source zone, Sci. Total Environ., 722 (2020) 137797, doi: 10.1016/j.scitotenv.2020.137797.
  9. J.W. Roy, J.E. Smith, R.W. Gillham, Natural remobilization of multi-component DNAPL pools due to dissolution, J. Contam. Hydrol., 59 (2002) 163–186.
  10. S. Lesage, S. Brown, Observation of the dissolution of NAPL mixtures, J. Contam. Hydrol., 15 (1994) 57–71.
  11. M. Vasudevan, C.D. Johnston, T.P. Bastow, G. Lekmine, J.L. Rayner, I.M. Nambi, G. Suresh Kumar, R. Ravi Krishna, G.B. Davis, Effect of compositional heterogeneity on dissolution of non-ideal LNAPL mixtures, J. Contam. Hydrol., 194 (2016) 10–16.
  12. P.T. Imhoff, P.R. Jaffé, G.F. Pinder, An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media, Water Resour. Res., 30 (1994) 307–320.
  13. S.E. Powers, L.M. Abriola, W.J. Weber, An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates, Water Resour. Res., 30 (1994) 321–332.
  14. A. Patmonoaji, Y. Hu, M. Nasir, C. Zhang, T. Suekane, Effects of dissolution fingering on mass transfer rate in three-dimensional porous media, Water Resour. Res., 57 (2021) e2020WR029353, doi: 10.1029/2020WR029353.
  15. M.W. Priddle, K.T.B. MacQuarrie, Dissolution of creosote in groundwater: an experimental and modeling investigation, J. Contam. Hydrol., 15 (1994) 27–56.
  16. J.W. Mercer, R.M. Cohen, A review of immiscible fluids in the subsurface: properties, models, characterization and remediation, J. Contam. Hydrol., 6 (1990) 107–163.
  17. D.I. Siegel, H.O. Pfannkuch, Silicate dissolution influence on Filson Creek chemistry, northeastern Minnesota, Geol. Soc. Am. Bull., 95 (1984) 1446–1453.
  18. D.M. Ward, O. Trass, A.I. Johnson, Mass transfer from fluid and solid spheres at low Reynolds numbers: Part II, Can. J. Chem. Eng., 40 (1962) 164–168.
  19. W.J. Powers, S.E. Abriola, L.M. Weber, An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: steady-state mass transfer rates, Water Resour. Res., 28 (1992) 2691–2705.
  20. P.T. Imhoff, M.W. Farthing, C.T. Miller, Modeling NAPL dissolution fingering with upscaled mass transfer rate coefficients, Adv. Water Resour., 26 (2003) 1097–1111.
  21. A.S. Miller, C.T. Mcneill, P. Mayer, Dissolution of trapped nonaqueous phase liquids’ mass transfer characterstics, Water Resour. Res., 25 (1990) 2783–2796.
  22. Y. Cohen, P.A. Ryan, Multimedia modeling of environmental transport: trichloroethylene test case, Environ. Sci. Technol., 19 (1985) 412–417.
  23. A. Luciano, P. Viotti, M.P. Papini, Laboratory investigation of DNAPL migration in porous media, J. Hazard. Mater., 176 (2010) 1006–1017.
  24. L.D. Stewart, J.C. Chambon, M.A. Widdowson, M.C. Kavanaugh, Upscaled modeling of complex DNAPL dissolution, J. Contam. Hydrol., 244 (2022) 103920, doi: 10.1016/j.jconhyd.2021.103920.
  25. H. Li, L. Zhao, X. Gao, X. Li, Experimental investigation of methyl tert-butyl ether dissolution in saturated porous media, Chin. J. Chem. Eng., 23 (2015) 1685–1690.
  26. Z. Guo, A.E. Russo, E.L. DiFilippo, Z. Zhang, C. Zheng, M.L. Brusseau, Mathematical modeling of organic liquid dissolution in heterogeneous source zones, J. Contam. Hydrol., 235 (2020) 103716, doi: 10.1016/j.jconhyd.2020.103716.
  27. C.V. Chrysikopoulos, K.Y. Lee, Contaminant transport resulting from multi-component nonaqueous phase liquid pool dissolution in three-dimensional subsurface formations, J. Contam. Hydrol., 31 (1998) 1–21.
  28. K.Y. Lee, C.V. Chrysikopoulos, Numerical modeling of threedimensional contaminant migration from dissolution of multi-component NAPL pools in saturated porous media, Environ. Geol., 26 (1995) 157–165.
  29. M. Vasudevan, I.M. Nambi, G. Suresh Kumar, Scenariobased modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications, J. Environ. Manage., 175 (2016) 9–19.
  30. W.G. Rixey, S. Joshi, Dissolution of MTBE From a Residually Trapped Gasoline Source. A Summary of Research Results, American Petroleum Institute, 2000.
  31. J.F. Devlin, J.R. Barbaro, A method of estimating multicomponent nonaqueous-phase liquid mass in porous media using aqueous concentration ratios, Environ. Toxicol. Chem., 20 (2001) 2443–2449.
  32. G. Lekmine, T.P. Bastow, C.D. Johnston, G.B. Davis, Dissolution of multi-component LNAPL gasolines:
    the effects of weathering and composition, J. Contam. Hydrol., 160 (2014) 1–11.
  33. K.Y. Lee, C.V. Chrysikopoulos, NAPL pool dissolution in stratified and anisotropic porous formations, J. Environ. Eng., 124 (1998) 851–862.
  34. D. Schaefer, Determinability of NAPL mass by measuring concentrations downstream of a contaminant source, Environ. Earth Sci., 67 (2012) 2459–2467.
  35. M.C. Padgett, G.R. Tick, K.C. Carroll, W.R. Burke, Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux, J. Contam. Hydrol., 198 (2017) 11–23.
  36. E.A. Seagren, T.O. Moore, Nonaqueous phase liquid pool dissolution as a function of average pore water velocity, J. Environ. Eng., 129 (2003) 786–799.
  37. J.T. Geller, J.R. Hunt, Mass transfer from nonaqueous phase organic liquids in water-saturated porous media, Water Resour. Res., 29 (1993) 833–845.
  38. S. Garg, W.G. Rixey, The dissolution of benzene, toluene, m-xylene and naphthalene from a residually trapped nonaqueous phase liquid under mass transfer limited conditions, J. Contam. Hydrol., 36 (1999) 313–331.
  39. Z. Yang, A. Niemi, F. Fagerlund, T. Illangasekare, R.L. Detwiler, Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools, J. Contam. Hydrol., 149 (2013) 88–99.
  40. K.E. Christensen, P.W. Altman, C. Schaefer, J.E. McCray, Steadystate DNAPL dissolution in three-dimensional fractured sandstone network experiments, J. Environ. Eng., 141 (2015) 04014047, doi: 10.1061/(asce)ee.1943-7870.0000871.
  41. H. Li, L. Zhao, X. Gao, X. Li, Experimental investigation of methyl tert-butyl ether dissolution in saturated porous media, Chin. J. Chem. Eng., 23 (2015) 1685–1690.
  42. T.P. Clement, T.R. Gautam, K.K. Lee, M.J. Truex, G.B. Davis, Modeling of DNAPL-dissolution, rate-limited sorption and biodegradation reactions in groundwater systems, Biorem. J., 8 (2004) 47–64.
  43. S.K. Hansen, B.H. Kueper, A new model for coupled multicomponent NAPL dissolution and aqueous-phase transport, with application to creosote dissolution in discrete fractures, Water Resour. Res., 50 (2014) 58–70.
  44. J.J. Kaluarachchi, J.C. Parker, Modeling multi-component organic chemical transport in three-fluid-phase porous media, J. Contam. Hydrol., 5 (1990) 349–374.
  45. M.T. Gönüllü, Modelling dissolution of an organic mixture in the subsurface, Water Res., 30 (1996) 649–653.
  46. R. Valsala, S.K. Govindarajan, Interaction of dissolution, sorption and biodegradation on transport of BTEX in a saturated groundwater system: numerical modeling and spatial moment analysis, J. Earth Syst. Sci., 127 (2018) 53, doi: 10.1007/s12040-018-0950-3.
  47. Y. Hu, A. Patmonoaji, H. Xu, K. Kaito, S. Matsushita, T. Suekane, Pore-scale investigation on nonaqueous phase liquid dissolution and mass transfer in 2D and 3D porous media, Int. J. Heat Mass Transfer, 169 (2021) 120901, doi: 10.1016/j.ijheatmasstransfer.2021.120901.
  48. S.A. Bradford, L.M. Abriola, Dissolution of residual tetrachloroethylene in fractional wettability porous media: Incorporation of interfacial area estimates, Water Resour. Res., 37 (2001) 1183–1195.
  49. A. Kokkinaki, D.M. O’Carroll, C.J. Werth, B.E. Sleep, An evaluation of Sherwood–Gilland models for NAPL dissolution and their relationship to soil properties, J. Contam. Hydrol., 155 (2013) 87–98.
  50. S.A. Bradford, K.M. Rathfelder, J. Lang, L.M. Abriola, G.E. Brown, Entrapment and dissolution of DNAPLs in heterogeneous porous media, J. Contam. Hydrol., 67 (2003) 133–157.
  51. A. Luciano, G. Mancini, V. Torretta, P. Viotti, An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area, Environ. Sci. Pollut. Res., 25 (2018) 33992–34004.
  52. J.T. Su, D. Needham, Mass transfer in the dissolution of a multi-component liquid droplet in an immiscible liquid environment., Langmuir, 29 (2013) 13339–13345.
  53. I.M. Nambi, S.E. Powers, Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations, Water Resour. Res., 39 (2003), doi: 10.1029/2001WR000667.
  54. B. Wu, H. Li, X. Du, L. Zhong, B. Yang, P. Du, Q. Gu, F. Li, Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: a two-dimensional flow cell study, Chemosphere, 144 (2016) 2142–2149.
  55. K. Nakamura, M. Kikumoto, Modeling water–NAPL–air threephase capillary behavior in soils, Soils Found., 54 (2014) 1225–1235.
  56. K. Nakamura, M. Kikumoto, New concept to describe threephase capillary pressure–degree of saturation relationship in porous media, J. Contam. Hydrol., 214 (2018) 1–15.
  57. T.C. Sale, D.B. McWhorter, Steady-state mass transfer from single-component dense nonaqueous phase liquids in uniform flow fields, Water Resour. Res., 37 (2001) 393–404.
  58. M.M. Hamed, P.D. Nelson, P.B. Bedient, A distributed-site model for non-equilibrium dissolution of multi-component residually trapped NAPL, Environ. Modell. Software, 15 (2000) 443–450.
  59. F. Wang, M.D. Annable, J.W. Jawitz, Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers, J. Contam. Hydrol., 152 (2013) 147–158.
  60. J.C. Parker, E. Park, Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers, Water Resour. Res., 40 (2004) 1–12.
  61. M.O. Rivett, S. Feenstra, J.A. Cherry, A controlled field experiment on groundwater contamination by a multicomponent DNAPL: creation of the emplaced-source and overview of dissolved plume development, J. Contam. Hydrol., 49 (2001) 111–149.
  62. D. Mackay, W. Ying Shiu, A. Maijanen, S. Feenstra, Dissolution of non-aqueous phase liquids in groundwater, J. Contam. Hydrol., 8 (1991) 23–42.
  63. C.I. Steefel, A.C. Lasaga, Chapter 16 – Evolution of Dissolution Patterns: Permeability Change Due to Coupled Flow and Reaction, D.C. Melchior, R.L. Bassett, Eds., Chemical Modeling of Aqueous Systems II, ACS Symposium Series, ACS Publication, Washington D.C., 1990, pp. 212–225. Available at https://doi.org/10.1021/bk-1990-0416.ch016
  64. S.E. Powers, I.M. Nambi, G.W. Curry, Non-aqueous phase liquid dissolution in heterogeneous systems: mechanisms and a local equilibrium modeling approach, Water Resour. Res., 34 (1998) 3293–3302.
  65. T.S. Soerens, D.A. Sabatini, J.H. Harwell, Effects of flow bypassing and nonuniform NAPL distribution on the mass transfer characteristics of NAPL dissolution, Water Resour. Res., 34 (1981) 63–65.
  66. R.C. Borden, C.-M. Kao, Evaluation of groundwater extraction for remediation of petroleum-contaminated aquifers, Water Environ. Res., 64 (1992) 28–36.
  67. S.E. Powers, L.M. Abriola, J.S. Dunkin, W.J. Weber, Phenomenological models for transient NAPL-water masstransfer processes, J. Contam. Hydrol., 16 (1994) 1–33.
  68. E.L. DiFilippo, K.C. Carroll, M.L. Brusseau, Impact of organic-liquid distribution and flow-field heterogeneity on reductions in mass flux, J. Contam. Hydrol., 115 (2010) 14–25.
  69. L. Liu, F. Wu, S. Haderlein, P. Grathwohl, Determination of the subcooled liquid solubilities of PAHs in partitioning batch experiments, Geosci. Front., 4 (2013) 123–126.
  70. K.C. Carroll, M.L. Brusseau, Dissolution, cyclodextrinenhanced solubilization, and mass removal of an ideal multicomponent organic liquid, J. Contam. Hydrol., 106 (2009) 62–72.
  71. V. Renu, G.S. Kumar, Numerical modeling on benzene dissolution into groundwater and transport of dissolved benzene in a saturated fracture-matrix system, Environ. Processes, 3 (2016) 781–802.
  72. K. Prasad Saripalli, H. Kim, P. Suresh, C. Rao, M.D. Annable, Measurement of specific fluid−fluid interfacial areas of immiscible fluids in porous media, Environ. Sci. Technol., 31 (1997) 932–936.
  73. K.P. Saripalli, M.D. Annable, P.S.C. Rao, Estimation of nonaqueous phase liquid−water interfacial areas in porous media following mobilization by chemical flooding, Environ. Sci. Technol., 31 (1997) 3384–3388.
  74. M.L. Brusseau, H. Janousek, A. Murao, G. Schnaar, Synchrotron X-ray microtomography and interfacial partitioning tracer test measurements of NAPL-water interfacial areas, Water Resour. Res., 44 (2008) 1–9.
  75. A.G. Karaoglu, N.K. Copty, N.H. Akyol, S.A. Kilavuz, M. Babaei, Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution, J. Contam. Hydrol., 225 (2019) 103515, doi: 10.1016/j.jconhyd.2019.103515.
  76. S. Feenstra, Aqueous concentration ratios to estimate mass of multi-component NAPL residual in porous media, Present. to Univ. Waterloo FbKiment Thesis Requir. Degree Dr. Philos., 1997.
  77. V.M. Vulava, L.D. McKay, M.M. Broholm, J.F. McCarthy, S.G. Driese, G.S. Sayler, Dissolution and transport of coal tar compounds in fractured clay-rich residuum, J. Hazard. Mater., 203–204 (2012) 283–289.
  78. Z. Gong, K. Alef, B.M. Wilke, P. Li, Dissolution and removal of PAHs from a contaminated soil using sunflower oil, Chemosphere, 58 (2005) 291–298.
  79. M.G. Mahmoodlu, E.M. Pontedeiro, J.S. Pérez Guerrero, A. Raoof, S. Majid Hassanizadeh, M.T. van Genuchten, Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study, J. Contam. Hydrol., 196 (2017) 43–51.
  80. B. Agaoglu, T. Scheytt, N.K. Copty, Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media, J. Contam. Hydrol., 140–141 (2012) 80–94.
  81. K.Y. Lee, C.V. Chrysikopoulos, Dissolution of a welldefined trichloroethylene pool in saturated porous media: experimental results and model simulations, Water Res., 36 (2002) 3911–3918.
  82. Y. Arcand, J. Hawari, S.R. Guiot, Solubility of pentachlorophenol in aqueous solutions: The pH effect, Water Res., 29 (1995) 131–136.
  83. S. Popp, C. Beyer, A. Dahmke, N. Koproch, R. Köber, S. Bauer, Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification, Environ. Earth Sci., 75 (2016) 1–13.
  84. D. Zhou, L.A. Dillard, M.J. Blunt, A physically based model of dissolution of nonaqueous phase liquids in the saturated zone, Transp. Porous Media, 39 (2000) 227–255.
  85. X. Yang, L.E. Erickson, L.T. Fan, A discrete blob model of contaminant transport in groundwater with trapped nonaqueous phase liquids, Chem. Eng. Commun., 154 (1996) 33–57.
  86. I.M. Nambi, S.E. Powers, NAPL dissolution in heterogeneous systems: an experimental investigation in a simple heterogeneous system, J. Contam. Hydrol., 44 (2000) 161–184.
  87. F.J. Leij, T.H. Skaggs, M.T. Van Genuchten, Analytical solutions for solute transport in three-dimensional semi-infinite porous media, Water Resour. Res., 27 (1991) 2719–2733.
  88. F.J. Leij, E. Priesack, M.G. Schaap, Solute transport modeled with Green’s functions with application to persistent solute sources, J. Contam. Hydrol., 41 (2000) 155–173.
  89. K. Lee, Transport of dissolved contaminants originating from a rectangular prism-shaped, multi-component nonaqueous-phase liquid source in saturated porous media, Environ. Geol., 43 (2002) 132–137.
  90. S.K. Hansen, B.H. Kueper, An analytical solution to multicomponent NAPL dissolution equations, Adv. Water Resour., 30 (2007) 382–388.
  91. R.L. Detwiler, H. Rajaram, R.J. Glass, Nonaqueousphase- liquid dissolution in variable-aperture fractures: development of a depth-averaged computational model with comparison to a physical experiment, Water Resour. Res., 37 (2001) 3115–3129.
  92. F.J. Leij, M.T.H. Van Genuchten, Analytical modeling of nonaqueous phase liquid dissolution with Green’s functions, Transp. Porous Media, 38 (2000) 141–166.
  93. C.V. Chrysikopoulos, Three‐dimensional analytical models of contaminant transport from nonaqueous phase liquid pool dissolution in saturated subsurface formations, Water Resour. Res., 31 (1995) 1137–1145.
  94. C.A. Peters, C.D. Knightes, D.G. Brown, Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment, Environ. Sci. Technol., 33 (1999) 4499–4507.
  95. L.R. Chevalier, S.J. Masten, R.B. Wallace, D.C. Wiggert, Experimental Investigation of surfactant-enhanced dissolution of residual NAPL in saturated soil, Groundwater Monit. Rem., 17 (1997) 89–98.
  96. J.C. Liu, P.S. Chang, Solubility and adsorption behaviors of chlorophenols in the presence of surfactant, Water Sci. Technol., 35 (1997) 123–130.
  97. J.E. Mccray, M.L. Brusseau, Cyclodextrin-enhanced in-situ flushing of multiple-component immiscible organic liquid contamination at the field scale: analysis of dissolution behavior, Environ. Sci. Technol., 33 (1999) 89–95.
  98. R.W. Falta, C.M. Lee, S.E. Brame, E. Roeder, J.T. Coates, C. Wright, A.L. Wood, C.G. Enfield, Field test of high molecular weight alcohol flushing for subsurface nonaqueous phase liquid remediation, Water Resour. Res., 35 (1999) 2095–2108.
  99. T.I. Ladaa, C.M. Lee, J.T. Coates, R.W. Falta, Cosolvent effects of alcohols on the Henry’s law constant and aqueous solubility of tetrachloroethylene (PCE), Chemosphere, 44 (2001) 1137–1143.
  100. R.A. Kanaly, K. Watanabe, Multiple mechanisms contribute to the biodegradation of benzo[a]pyrene by petroleum-derived multi-component nonaqueous-phase liquids, Environ. Toxicol. Chem., 23 (2004) 850–856.
  101. J.W. Jawitz, D. Dai, P.S.C. Rao, M.D. Annable, R.D. Rhue, Rate-limited solubilization of multi-component nonaqueousphase liquids by flushing with cosolvents and surfactants: modeling data from laboratory and field experiments, Environ. Sci. Technol., 37 (2003) 1983–1991.
  102. S.W. Jeong, A.L. Wood, T.R. Lee, Enhanced removal of DNAPL trapped in porous media using simultaneous injection of cosolvent with air: influencing factors and removal mechanisms, J. Hazard. Mater., 101 (2003) 109–122.
  103. Y.U. Kim, M.C. Wang, Effect of ultrasound on oil removal from soils, Ultrasonics, 41 (2003) 539–542.
  104. K.C. Glover, J. Munakata-Marr, T.H. Illangasekare, Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology, Environ. Sci. Technol., 41 (2007) 1384–1389.
  105. C.V. Chrysikopoulos, E.T. Vogler, Acoustically enhanced multicomponent NAPL ganglia dissolution in water saturated packed columns, Environ. Sci. Technol., 38 (2004) 2940–2945.
  106. ITRC, Evaluating Natural Source Zone Depletion at Sites with LNAPL, The Interstate Technology & Regulatory Council, Columbia, 2009, pp. 1–76.
  107. M. Chen, L.M. Abriola, B.K. Amos, E.J. Suchomel, K.D. Pennell, F.E. Löffler, J.A. Christ, Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis, J. Contam. Hydrol., 151 (2013) 117–130.
  108. C.V. Chrysikopoulos, E.T. Vogler, Acoustically enhanced ganglia dissolution and mobilization in a monolayer of glass beads, Transp. Porous Media, 64 (2006) 103–121.
  109. S. Saenton, T.H. Illangasekare, K. Soga, T.A. Saba, Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points, J. Contam. Hydrol., 59 (2002) 27–44.
  110. F. Fagerlund, T.H. Illangasekare, T. Phenrat, H.J. Kim, G.V. Lowry, PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone, J. Contam. Hydrol., 131 (2012) 9–28.
  111. S. Lee, Enhanced dissolution of TCE in NAPL by TCEdegrading bacteria in wetland soils, J. Hazard. Mater., 145 (2007) 17–22.
  112. J. Fortin, W.A. Jury, M.A. Anderson, Enhanced removal of trapped non-aqueous phase liquids from saturated soil using surfactant solutions, J. Contam. Hydrol., 24 (1997) 247–267.
  113. Y. Yang, P.L. Mccarty, Biologically enhanced dissolution of tetrachloroethene DNAPL, Environ. Sci. Technol., 34 (2000) 2979–2984.
  114. S. Chu, A. Prosperetti, Dissolution and growth of a multicomponent drop in an immiscible liquid, J. Fluid Mech., 798 (2016) 787–811.
  115. G.R. Tick, J.R. Harvell, D. Murgulet, Intermediate-scale investigation of enhanced-solubilization agents on the dissolution and removal of a multi-component dense nonaqueous phase liquid (DNAPL) source, Water Air Soil Pollut., 226 (2015) 371, doi: 10.1007/s11270-015-2636-7.
  116. F.H. Chapelle, L.J. Kauffman, M.A. Widdowson, Modeling long-term trends of chlorinated ethene contamination at a public supply well, J. Am. Water Resour. Assoc., 51 (2015) 1–13.
  117. C.S. Carr, S. Garg, J.B. Hughes, Effect of dechlorinating bacteria on the longevity and composition of PCE-containing nonaqueous phase liquids under equilibrium dissolution conditions, Environ. Sci. Technol., 34 (2000) 1088–1094.
  118. N. Cope, J.B. Hughes, Biologically-enhanced removal of PCE from NAPL source zones, Environ. Sci. Technol., 35 (2001) 2014–2021.
  119. M.O. Rivett, S. Feenstra, Dissolution of an emplaced source of DNAPL in a natural aquifer setting, Environ. Sci. Technol., 39 (2005) 447–455.
  120. A.E. Russo, M.K. Mahal, M.L. Brusseau, Nonideal behavior during complete dissolution of organic immiscible liquid, J. Hazard. Mater., 172 (2009) 208–213.
  121. C. Serralde, M.O. Rivett, J.W. Molson, Interaction of Multiple In-Series DNAPL Residual Source Zones: Implications for Dissolution, Repartitioning and DNAPL Mobilization at Contaminated Industrial Sites, IAHS, UKCEH Wallingford, Oxfordshire OX10 8BB, UK, 2008, pp. 388–395.
  122. C.A. Ramsburg, C.E. Thornton, J.A. Christ, Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid, Environ. Sci. Technol., 44 (2010) 9105–9111.
  123. C.A. Ramsburg, J.A. Christ, S.R. Douglas, A. Boroumand, Analytical modeling of degradation product partitioning kinetics in source zones containing entrapped DNAPL, Water Resour. Res., 47 (2011), doi: 10.1029/2010WR009958.
  124. T. Saba, T.H. Illangasekare, J. Ewing, Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field, J. Contam. Hydrol., 51 (2001) 63–82.
  125. P.L. Morrill, B.E. Sleep, D.J. Seepersad, M.L. McMaster, E.D. Hood, C. LeBron, D.W. Major, E.A. Edwards, B. Sherwood Lollar, Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone, J. Contam. Hydrol., 110 (2009) 60–71.
  126. Y. Yang, P.L. McCarty, Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution, Environ. Sci. Technol., 36 (2002) 3400–3404.