References
- A.A. Keller, M.J. Blunt, P.V. Roberts, Behavior of nonaqueous
phase liquids in fractured porous media under two-phase flow
conditions, Transp. Porous Media, 38 (2000) 189–203.
- J.W. Roy, J.E. Smith, R.W. Gillham, Laboratory evidence of
natural remobilization of multi-component DNAPL pools due
to dissolution, J. Contam. Hydrol., 74 (2004) 145–161.
- M.O. Rivett, R.M. Allen-King, A controlled field experiment on
groundwater contamination
by a multi-component DNAPL:
dissolved-plume retardation, J. Contam. Hydrol., 66 (2003)
117–146.
- R.G. McLaren, E.A. Sudicky, Y.J. Park, W.A. Illman, Numerical
simulation of DNAPL emissions and remediation in a fractured
dolomitic aquifer, J. Contam. Hydrol., 136–137 (2012) 56–71.
- Y.C. Lee, T.S. Kwon, J.S. Yang, J.W. Yang, Remediation of
groundwater contaminated with DNAPLs by biodegradable oil
emulsion, J. Hazard. Mater., 140 (2007) 340–345.
- P.P. Brahma, T.C. Harmon, The effect of multi-component
diffusion on NAPL dissolution from spherical ternary mixtures,
J. Contam. Hydrol., 67 (2003) 43–60.
- L. Liu, U. Maier, P. Grathwohl, S.B. Haderlein, Contaminant
mass transfer from NAPLs to water studied in a continuously
stirred flow-through reactor, J. Environ. Eng., 138 (2012) 826–832.
- J.A. Van Leeuwen, N. Hartog, J. Gerritse, C. Gallacher, R. Helmus,
O. Brock, J.R. Parsons, S.M. Hassanizadeh, The dissolution and
microbial degradation of mobile aromatic hydrocarbons from
a Pintsch gas tar DNAPL source zone, Sci. Total Environ.,
722 (2020) 137797, doi: 10.1016/j.scitotenv.2020.137797.
- J.W. Roy, J.E. Smith, R.W. Gillham, Natural remobilization of
multi-component DNAPL pools due to dissolution, J. Contam.
Hydrol., 59 (2002) 163–186.
- S. Lesage, S. Brown, Observation of the dissolution of NAPL
mixtures, J. Contam. Hydrol., 15 (1994) 57–71.
- M. Vasudevan, C.D. Johnston, T.P. Bastow, G. Lekmine,
J.L. Rayner, I.M. Nambi, G. Suresh Kumar, R. Ravi Krishna,
G.B. Davis, Effect of compositional heterogeneity on dissolution
of non-ideal LNAPL mixtures, J. Contam. Hydrol., 194 (2016)
10–16.
- P.T. Imhoff, P.R. Jaffé, G.F. Pinder, An experimental study of
complete dissolution of a nonaqueous phase liquid in saturated
porous media, Water Resour. Res., 30 (1994) 307–320.
- S.E. Powers, L.M. Abriola, W.J. Weber, An experimental
investigation of nonaqueous phase liquid dissolution in
saturated subsurface systems: transient mass transfer rates,
Water Resour. Res., 30 (1994) 321–332.
- A. Patmonoaji, Y. Hu, M. Nasir, C. Zhang, T. Suekane, Effects of
dissolution fingering on mass transfer rate in three-dimensional
porous media, Water Resour. Res., 57 (2021) e2020WR029353,
doi: 10.1029/2020WR029353.
- M.W. Priddle, K.T.B. MacQuarrie, Dissolution of creosote in
groundwater: an experimental and modeling investigation,
J. Contam. Hydrol., 15 (1994) 27–56.
- J.W. Mercer, R.M. Cohen, A review of immiscible fluids in
the subsurface: properties, models, characterization and
remediation, J. Contam. Hydrol., 6 (1990) 107–163.
- D.I. Siegel, H.O. Pfannkuch, Silicate dissolution influence on
Filson Creek chemistry, northeastern Minnesota, Geol. Soc. Am.
Bull., 95 (1984) 1446–1453.
- D.M. Ward, O. Trass, A.I. Johnson, Mass transfer from fluid and
solid spheres at low Reynolds numbers: Part II, Can. J. Chem.
Eng., 40 (1962) 164–168.
- W.J. Powers, S.E. Abriola, L.M. Weber, An experimental
investigation of nonaqueous phase liquid dissolution in
saturated subsurface systems: steady-state mass transfer rates,
Water Resour. Res., 28 (1992) 2691–2705.
- P.T. Imhoff, M.W. Farthing, C.T. Miller, Modeling NAPL
dissolution fingering with upscaled mass transfer rate
coefficients, Adv. Water Resour., 26 (2003) 1097–1111.
- A.S. Miller, C.T. Mcneill, P. Mayer, Dissolution of trapped
nonaqueous phase liquids’ mass transfer characterstics,
Water Resour. Res., 25 (1990) 2783–2796.
- Y. Cohen, P.A. Ryan, Multimedia modeling of environmental
transport: trichloroethylene test case, Environ. Sci. Technol.,
19 (1985) 412–417.
- A. Luciano, P. Viotti, M.P. Papini, Laboratory investigation
of DNAPL migration in porous media, J. Hazard. Mater.,
176 (2010) 1006–1017.
- L.D. Stewart, J.C. Chambon, M.A. Widdowson, M.C. Kavanaugh,
Upscaled modeling of complex DNAPL dissolution, J. Contam.
Hydrol., 244 (2022) 103920, doi: 10.1016/j.jconhyd.2021.103920.
- H. Li, L. Zhao, X. Gao, X. Li, Experimental investigation of
methyl tert-butyl ether dissolution in saturated porous media,
Chin. J. Chem. Eng., 23 (2015) 1685–1690.
- Z. Guo, A.E. Russo, E.L. DiFilippo, Z. Zhang, C. Zheng,
M.L. Brusseau, Mathematical modeling of organic liquid
dissolution in heterogeneous source zones, J. Contam. Hydrol.,
235 (2020) 103716, doi: 10.1016/j.jconhyd.2020.103716.
- C.V. Chrysikopoulos, K.Y. Lee, Contaminant transport
resulting from multi-component nonaqueous phase liquid
pool dissolution in three-dimensional subsurface formations,
J. Contam. Hydrol., 31 (1998) 1–21.
- K.Y. Lee, C.V. Chrysikopoulos, Numerical modeling of threedimensional
contaminant migration from dissolution of
multi-component NAPL pools in saturated porous media,
Environ. Geol., 26 (1995) 157–165.
- M. Vasudevan, I.M. Nambi, G. Suresh Kumar, Scenariobased
modelling of mass transfer mechanisms at a petroleum
contaminated field site-numerical implications, J. Environ.
Manage., 175 (2016) 9–19.
- W.G. Rixey, S. Joshi, Dissolution of MTBE From a Residually
Trapped Gasoline Source. A Summary of Research Results,
American Petroleum Institute, 2000.
- J.F. Devlin, J.R. Barbaro, A method of estimating multicomponent
nonaqueous-phase liquid mass in porous media
using aqueous concentration ratios, Environ. Toxicol. Chem.,
20 (2001) 2443–2449.
- G. Lekmine, T.P. Bastow, C.D. Johnston, G.B. Davis, Dissolution
of multi-component LNAPL gasolines:
the effects of weathering
and composition, J. Contam. Hydrol., 160 (2014) 1–11.
- K.Y. Lee, C.V. Chrysikopoulos, NAPL pool dissolution in
stratified and anisotropic porous formations, J. Environ. Eng.,
124 (1998) 851–862.
- D. Schaefer, Determinability of NAPL mass by measuring
concentrations downstream of a contaminant source, Environ.
Earth Sci., 67 (2012) 2459–2467.
- M.C. Padgett, G.R. Tick, K.C. Carroll, W.R. Burke, Chemical
structure influence on NAPL mixture nonideality evolution,
rate-limited dissolution, and contaminant mass flux, J. Contam.
Hydrol., 198 (2017) 11–23.
- E.A. Seagren, T.O. Moore, Nonaqueous phase liquid pool
dissolution as a function of average pore water velocity,
J. Environ. Eng., 129 (2003) 786–799.
- J.T. Geller, J.R. Hunt, Mass transfer from nonaqueous phase
organic liquids in water-saturated porous media, Water Resour.
Res., 29 (1993) 833–845.
- S. Garg, W.G. Rixey, The dissolution of benzene, toluene,
m-xylene and naphthalene from a residually trapped nonaqueous
phase liquid under mass transfer limited conditions,
J. Contam. Hydrol., 36 (1999) 313–331.
- Z. Yang, A. Niemi, F. Fagerlund, T. Illangasekare, R.L. Detwiler,
Dissolution of dense non-aqueous phase liquids in vertical
fractures: effect of finger residuals and dead-end pools,
J. Contam. Hydrol., 149 (2013) 88–99.
- K.E. Christensen, P.W. Altman, C. Schaefer, J.E. McCray, Steadystate
DNAPL dissolution in three-dimensional fractured
sandstone network experiments, J. Environ. Eng., 141 (2015)
04014047, doi: 10.1061/(asce)ee.1943-7870.0000871.
- H. Li, L. Zhao, X. Gao, X. Li, Experimental investigation of
methyl tert-butyl ether dissolution in saturated porous media,
Chin. J. Chem. Eng., 23 (2015) 1685–1690.
- T.P. Clement, T.R. Gautam, K.K. Lee, M.J. Truex, G.B. Davis,
Modeling of DNAPL-dissolution, rate-limited sorption and
biodegradation reactions in groundwater systems, Biorem. J.,
8 (2004) 47–64.
- S.K. Hansen, B.H. Kueper, A new model for coupled multicomponent
NAPL dissolution and aqueous-phase transport,
with application to creosote dissolution in discrete fractures,
Water Resour. Res., 50 (2014) 58–70.
- J.J. Kaluarachchi, J.C. Parker, Modeling multi-component
organic chemical transport in three-fluid-phase porous media,
J. Contam. Hydrol., 5 (1990) 349–374.
- M.T. Gönüllü, Modelling dissolution of an organic mixture in
the subsurface, Water Res., 30 (1996) 649–653.
- R. Valsala, S.K. Govindarajan, Interaction of dissolution,
sorption and biodegradation on transport of BTEX in a
saturated groundwater system: numerical modeling and spatial
moment analysis, J. Earth Syst. Sci., 127 (2018) 53, doi: 10.1007/s12040-018-0950-3.
- Y. Hu, A. Patmonoaji, H. Xu, K. Kaito, S. Matsushita, T. Suekane,
Pore-scale investigation on nonaqueous phase liquid
dissolution and mass transfer in 2D and 3D porous media,
Int. J. Heat Mass Transfer, 169 (2021) 120901, doi: 10.1016/j.ijheatmasstransfer.2021.120901.
- S.A. Bradford, L.M. Abriola, Dissolution of residual
tetrachloroethylene in fractional wettability porous media:
Incorporation of interfacial area estimates, Water Resour. Res.,
37 (2001) 1183–1195.
- A. Kokkinaki, D.M. O’Carroll, C.J. Werth, B.E. Sleep,
An evaluation of Sherwood–Gilland models for NAPL
dissolution and their relationship to soil properties, J. Contam.
Hydrol., 155 (2013) 87–98.
- S.A. Bradford, K.M. Rathfelder, J. Lang, L.M. Abriola, G.E. Brown,
Entrapment and dissolution of DNAPLs in heterogeneous
porous media, J. Contam. Hydrol., 67 (2003) 133–157.
- A. Luciano, G. Mancini, V. Torretta, P. Viotti, An empirical
model for the evaluation of the dissolution rate from a
DNAPL-contaminated area, Environ. Sci. Pollut. Res., 25 (2018)
33992–34004.
- J.T. Su, D. Needham, Mass transfer in the dissolution of a
multi-component liquid droplet in an immiscible liquid
environment., Langmuir, 29 (2013) 13339–13345.
- I.M. Nambi, S.E. Powers, Mass transfer correlations for
nonaqueous phase liquid dissolution from regions with
high initial saturations, Water Resour. Res., 39 (2003),
doi: 10.1029/2001WR000667.
- B. Wu, H. Li, X. Du, L. Zhong, B. Yang, P. Du, Q. Gu, F. Li,
Correlation between DNAPL distribution area and dissolved
concentration in surfactant enhanced aquifer remediation
effluent: a two-dimensional flow cell study, Chemosphere,
144 (2016) 2142–2149.
- K. Nakamura, M. Kikumoto, Modeling water–NAPL–air threephase
capillary behavior in soils, Soils Found., 54 (2014) 1225–1235.
- K. Nakamura, M. Kikumoto, New concept to describe threephase
capillary pressure–degree of saturation relationship in
porous media, J. Contam. Hydrol., 214 (2018) 1–15.
- T.C. Sale, D.B. McWhorter, Steady-state mass transfer from
single-component dense nonaqueous phase liquids in uniform
flow fields, Water Resour. Res., 37 (2001) 393–404.
- M.M. Hamed, P.D. Nelson, P.B. Bedient, A distributed-site model
for non-equilibrium dissolution of multi-component residually
trapped NAPL, Environ. Modell. Software, 15 (2000) 443–450.
- F. Wang, M.D. Annable, J.W. Jawitz, Field-scale prediction of
enhanced DNAPL dissolution based on partitioning tracers,
J. Contam. Hydrol., 152 (2013) 147–158.
- J.C. Parker, E. Park, Modeling field-scale dense nonaqueous
phase liquid dissolution kinetics in heterogeneous aquifers,
Water Resour. Res., 40 (2004) 1–12.
- M.O. Rivett, S. Feenstra, J.A. Cherry, A controlled field
experiment on groundwater contamination by a multicomponent
DNAPL: creation of the emplaced-source and
overview of dissolved plume development, J. Contam. Hydrol.,
49 (2001) 111–149.
- D. Mackay, W. Ying Shiu, A. Maijanen, S. Feenstra, Dissolution
of non-aqueous phase liquids in groundwater, J. Contam.
Hydrol., 8 (1991) 23–42.
- C.I. Steefel, A.C. Lasaga, Chapter 16 – Evolution of Dissolution
Patterns: Permeability Change Due to Coupled Flow and
Reaction, D.C. Melchior, R.L. Bassett, Eds., Chemical
Modeling of Aqueous Systems II, ACS Symposium Series, ACS
Publication, Washington D.C., 1990, pp. 212–225. Available at
https://doi.org/10.1021/bk-1990-0416.ch016
- S.E. Powers, I.M. Nambi, G.W. Curry, Non-aqueous phase
liquid dissolution in heterogeneous systems: mechanisms and
a local equilibrium modeling approach, Water Resour. Res.,
34 (1998) 3293–3302.
- T.S. Soerens, D.A. Sabatini, J.H. Harwell, Effects of flow
bypassing and nonuniform NAPL distribution on the mass
transfer characteristics of NAPL dissolution, Water Resour.
Res., 34 (1981) 63–65.
- R.C. Borden, C.-M. Kao, Evaluation of groundwater extraction
for remediation of petroleum-contaminated aquifers,
Water Environ. Res., 64 (1992) 28–36.
- S.E. Powers, L.M. Abriola, J.S. Dunkin, W.J. Weber,
Phenomenological models for transient NAPL-water masstransfer
processes, J. Contam. Hydrol., 16 (1994) 1–33.
- E.L. DiFilippo, K.C. Carroll, M.L. Brusseau, Impact of
organic-liquid distribution and flow-field heterogeneity on
reductions in mass flux, J. Contam. Hydrol., 115 (2010) 14–25.
- L. Liu, F. Wu, S. Haderlein, P. Grathwohl, Determination of
the subcooled liquid solubilities of PAHs in partitioning batch
experiments, Geosci. Front., 4 (2013) 123–126.
- K.C. Carroll, M.L. Brusseau, Dissolution, cyclodextrinenhanced
solubilization, and mass removal of an ideal multicomponent
organic liquid, J. Contam. Hydrol., 106 (2009) 62–72.
- V. Renu, G.S. Kumar, Numerical modeling on benzene
dissolution into groundwater and transport of dissolved
benzene in a saturated fracture-matrix system, Environ.
Processes, 3 (2016) 781–802.
- K. Prasad Saripalli, H. Kim, P. Suresh, C. Rao, M.D. Annable,
Measurement of specific fluid−fluid interfacial areas of
immiscible fluids in porous media, Environ. Sci. Technol.,
31 (1997) 932–936.
- K.P. Saripalli, M.D. Annable, P.S.C. Rao, Estimation of
nonaqueous phase liquid−water interfacial areas in porous
media following mobilization by chemical flooding, Environ.
Sci. Technol., 31 (1997) 3384–3388.
- M.L. Brusseau, H. Janousek, A. Murao, G. Schnaar, Synchrotron
X-ray microtomography and interfacial partitioning tracer
test measurements of NAPL-water interfacial areas, Water
Resour. Res., 44 (2008) 1–9.
- A.G. Karaoglu, N.K. Copty, N.H. Akyol, S.A. Kilavuz,
M. Babaei, Experiments and sensitivity coefficients
analysis for multiphase flow model calibration of enhanced
DNAPL dissolution, J. Contam. Hydrol., 225 (2019) 103515,
doi: 10.1016/j.jconhyd.2019.103515.
- S. Feenstra, Aqueous concentration ratios to estimate mass
of multi-component NAPL residual in porous media, Present.
to Univ. Waterloo FbKiment Thesis Requir. Degree Dr.
Philos., 1997.
- V.M. Vulava, L.D. McKay, M.M. Broholm, J.F. McCarthy,
S.G. Driese, G.S. Sayler, Dissolution and transport of coal
tar compounds in fractured clay-rich residuum, J. Hazard.
Mater., 203–204 (2012) 283–289.
- Z. Gong, K. Alef, B.M. Wilke, P. Li, Dissolution and removal
of PAHs from a contaminated soil using sunflower oil,
Chemosphere, 58 (2005) 291–298.
- M.G. Mahmoodlu, E.M. Pontedeiro, J.S. Pérez Guerrero,
A. Raoof, S. Majid Hassanizadeh, M.T. van Genuchten,
Dissolution kinetics of volatile organic compound vapors in
water: An integrated experimental and computational study,
J. Contam. Hydrol., 196 (2017) 43–51.
- B. Agaoglu, T. Scheytt, N.K. Copty, Laboratory-scale
experiments and numerical modeling of cosolvent flushing
of multi-component NAPLs in saturated porous media,
J. Contam. Hydrol., 140–141 (2012) 80–94.
- K.Y. Lee, C.V. Chrysikopoulos, Dissolution of a welldefined
trichloroethylene pool in saturated porous media:
experimental results and model simulations, Water Res.,
36 (2002) 3911–3918.
- Y. Arcand, J. Hawari, S.R. Guiot, Solubility of pentachlorophenol
in aqueous solutions: The pH effect, Water Res.,
29 (1995) 131–136.
- S. Popp, C. Beyer, A. Dahmke, N. Koproch, R. Köber,
S. Bauer, Temperature-dependent dissolution of residual
non-aqueous phase liquids: model development and
verification, Environ. Earth Sci., 75 (2016) 1–13.
- D. Zhou, L.A. Dillard, M.J. Blunt, A physically based model
of dissolution of nonaqueous phase liquids in the saturated
zone, Transp. Porous Media, 39 (2000) 227–255.
- X. Yang, L.E. Erickson, L.T. Fan, A discrete blob model of
contaminant transport in groundwater with trapped nonaqueous
phase liquids, Chem. Eng. Commun., 154 (1996) 33–57.
- I.M. Nambi, S.E. Powers, NAPL dissolution in heterogeneous
systems: an experimental investigation in a simple
heterogeneous system, J. Contam. Hydrol., 44 (2000) 161–184.
- F.J. Leij, T.H. Skaggs, M.T. Van Genuchten, Analytical solutions
for solute transport in three-dimensional semi-infinite
porous media, Water Resour. Res., 27 (1991) 2719–2733.
- F.J. Leij, E. Priesack, M.G. Schaap, Solute transport modeled
with Green’s functions with application to persistent solute
sources, J. Contam. Hydrol., 41 (2000) 155–173.
- K. Lee, Transport of dissolved contaminants originating
from a rectangular prism-shaped, multi-component
nonaqueous-phase liquid source in saturated porous media,
Environ. Geol., 43 (2002) 132–137.
- S.K. Hansen, B.H. Kueper, An analytical solution to multicomponent
NAPL dissolution equations, Adv. Water Resour.,
30 (2007) 382–388.
- R.L. Detwiler, H. Rajaram, R.J. Glass, Nonaqueousphase-
liquid dissolution in variable-aperture fractures:
development of a depth-averaged computational model with
comparison to a physical experiment, Water Resour. Res.,
37 (2001) 3115–3129.
- F.J. Leij, M.T.H. Van Genuchten, Analytical modeling of
nonaqueous phase liquid dissolution with Green’s functions,
Transp. Porous Media, 38 (2000) 141–166.
- C.V. Chrysikopoulos, Three‐dimensional analytical models
of contaminant transport from nonaqueous phase liquid
pool dissolution in saturated subsurface formations,
Water Resour. Res., 31 (1995) 1137–1145.
- C.A. Peters, C.D. Knightes, D.G. Brown, Long-term
composition dynamics of PAH-containing NAPLs and
implications for risk assessment, Environ. Sci. Technol.,
33 (1999) 4499–4507.
- L.R. Chevalier, S.J. Masten, R.B. Wallace, D.C. Wiggert,
Experimental Investigation of surfactant-enhanced
dissolution of residual NAPL in saturated soil, Groundwater
Monit. Rem., 17 (1997) 89–98.
- J.C. Liu, P.S. Chang, Solubility and adsorption behaviors
of chlorophenols in the presence of surfactant, Water Sci.
Technol., 35 (1997) 123–130.
- J.E. Mccray, M.L. Brusseau, Cyclodextrin-enhanced in-situ
flushing of multiple-component immiscible organic liquid
contamination at the field scale: analysis of dissolution
behavior, Environ. Sci. Technol., 33 (1999) 89–95.
- R.W. Falta, C.M. Lee, S.E. Brame, E. Roeder, J.T. Coates,
C. Wright, A.L. Wood, C.G. Enfield, Field test of high
molecular weight alcohol flushing for subsurface nonaqueous
phase liquid remediation, Water Resour. Res., 35 (1999)
2095–2108.
- T.I. Ladaa, C.M. Lee, J.T. Coates, R.W. Falta, Cosolvent
effects of alcohols on the Henry’s law constant and aqueous
solubility of tetrachloroethylene (PCE), Chemosphere,
44 (2001) 1137–1143.
- R.A. Kanaly, K. Watanabe, Multiple mechanisms contribute to
the biodegradation of benzo[a]pyrene by petroleum-derived
multi-component nonaqueous-phase liquids, Environ.
Toxicol. Chem., 23 (2004) 850–856.
- J.W. Jawitz, D. Dai, P.S.C. Rao, M.D. Annable, R.D. Rhue,
Rate-limited solubilization of multi-component nonaqueousphase
liquids by flushing with cosolvents and surfactants:
modeling data from laboratory and field experiments,
Environ. Sci. Technol., 37 (2003) 1983–1991.
- S.W. Jeong, A.L. Wood, T.R. Lee, Enhanced removal of DNAPL
trapped in porous media using simultaneous injection
of cosolvent with air: influencing factors and removal
mechanisms, J. Hazard. Mater., 101 (2003) 109–122.
- Y.U. Kim, M.C. Wang, Effect of ultrasound on oil removal
from soils, Ultrasonics, 41 (2003) 539–542.
- K.C. Glover, J. Munakata-Marr, T.H. Illangasekare,
Biologically enhanced mass transfer of tetrachloroethene
from DNAPL in source zones: experimental evaluation
and influence of pool morphology, Environ. Sci. Technol.,
41 (2007) 1384–1389.
- C.V. Chrysikopoulos, E.T. Vogler, Acoustically enhanced multicomponent
NAPL ganglia dissolution in water saturated
packed columns, Environ. Sci. Technol., 38 (2004) 2940–2945.
- ITRC, Evaluating Natural Source Zone Depletion at Sites with
LNAPL, The Interstate Technology & Regulatory Council,
Columbia, 2009, pp. 1–76.
- M. Chen, L.M. Abriola, B.K. Amos, E.J. Suchomel, K.D. Pennell,
F.E. Löffler, J.A. Christ, Microbially enhanced dissolution and
reductive dechlorination of PCE by a mixed culture: Model
validation and sensitivity analysis, J. Contam. Hydrol.,
151 (2013) 117–130.
- C.V. Chrysikopoulos, E.T. Vogler, Acoustically enhanced
ganglia dissolution and mobilization in a monolayer of glass
beads, Transp. Porous Media, 64 (2006) 103–121.
- S. Saenton, T.H. Illangasekare, K. Soga, T.A. Saba, Effects of
source zone heterogeneity on surfactant-enhanced NAPL
dissolution and resulting remediation end-points, J. Contam.
Hydrol., 59 (2002) 27–44.
- F. Fagerlund, T.H. Illangasekare, T. Phenrat, H.J. Kim,
G.V. Lowry, PCE dissolution and simultaneous dechlorination
by nanoscale zero-valent iron particles in a DNAPL source
zone, J. Contam. Hydrol., 131 (2012) 9–28.
- S. Lee, Enhanced dissolution of TCE in NAPL by TCEdegrading
bacteria in wetland soils, J. Hazard. Mater.,
145 (2007) 17–22.
- J. Fortin, W.A. Jury, M.A. Anderson, Enhanced removal of
trapped non-aqueous phase liquids from saturated soil using
surfactant solutions, J. Contam. Hydrol., 24 (1997) 247–267.
- Y. Yang, P.L. Mccarty, Biologically enhanced dissolution of
tetrachloroethene DNAPL, Environ. Sci. Technol., 34 (2000)
2979–2984.
- S. Chu, A. Prosperetti, Dissolution and growth of a multicomponent
drop in an immiscible liquid, J. Fluid Mech.,
798 (2016) 787–811.
- G.R. Tick, J.R. Harvell, D. Murgulet, Intermediate-scale
investigation of enhanced-solubilization agents on the
dissolution and removal of a multi-component dense
nonaqueous phase liquid (DNAPL) source, Water Air Soil
Pollut., 226 (2015) 371, doi: 10.1007/s11270-015-2636-7.
- F.H. Chapelle, L.J. Kauffman, M.A. Widdowson, Modeling
long-term trends of chlorinated ethene contamination at a
public supply well, J. Am. Water Resour. Assoc., 51 (2015)
1–13.
- C.S. Carr, S. Garg, J.B. Hughes, Effect of dechlorinating
bacteria on the longevity and composition of PCE-containing
nonaqueous phase liquids under equilibrium dissolution
conditions, Environ. Sci. Technol., 34 (2000) 1088–1094.
- N. Cope, J.B. Hughes, Biologically-enhanced removal of PCE
from NAPL source zones, Environ. Sci. Technol., 35 (2001)
2014–2021.
- M.O. Rivett, S. Feenstra, Dissolution of an emplaced source
of DNAPL in a natural aquifer setting, Environ. Sci. Technol.,
39 (2005) 447–455.
- A.E. Russo, M.K. Mahal, M.L. Brusseau, Nonideal behavior
during complete dissolution of organic immiscible liquid,
J. Hazard. Mater., 172 (2009) 208–213.
- C. Serralde, M.O. Rivett, J.W. Molson, Interaction of Multiple
In-Series DNAPL Residual Source Zones: Implications for
Dissolution, Repartitioning and DNAPL Mobilization at
Contaminated Industrial Sites, IAHS, UKCEH Wallingford,
Oxfordshire OX10 8BB, UK, 2008, pp. 388–395.
- C.A. Ramsburg, C.E. Thornton, J.A. Christ, Degradation
product partitioning in source zones containing chlorinated
ethene dense non-aqueous-phase liquid, Environ. Sci.
Technol., 44 (2010) 9105–9111.
- C.A. Ramsburg, J.A. Christ, S.R. Douglas, A. Boroumand,
Analytical modeling of degradation product partitioning
kinetics in source zones containing entrapped DNAPL,
Water Resour. Res., 47 (2011), doi: 10.1029/2010WR009958.
- T. Saba, T.H. Illangasekare, J. Ewing, Investigation of
surfactant-enhanced dissolution of entrapped nonaqueous
phase liquid chemicals in a two-dimensional groundwater
flow field, J. Contam. Hydrol., 51 (2001) 63–82.
- P.L. Morrill, B.E. Sleep, D.J. Seepersad, M.L. McMaster,
E.D. Hood, C. LeBron, D.W. Major, E.A. Edwards, B. Sherwood
Lollar, Variations in expression of carbon isotope
fractionation of chlorinated ethenes during biologically
enhanced PCE dissolution close to a source zone, J. Contam.
Hydrol., 110 (2009) 60–71.
- Y. Yang, P.L. McCarty, Comparison between donor substrates
for biologically enhanced tetrachloroethene DNAPL
dissolution, Environ. Sci. Technol., 36 (2002) 3400–3404.