References
- M. Bilal, S.S. Ashraf, D. Barceló, H.M.N. Iqbal, Biocatalytic
degradation/redefining “removal” fate of pharmaceutically
active compounds and antibiotics in the aquatic environment,
Sci. Total Environ., 691 (2019) 1190–1211.
- B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on
emerging contaminants in wastewaters and the environment:
current knowledge, understudied areas and recommendations
for future monitoring, Water Res., 72 (2015) 3–27.
- H. Luo, Y. Zeng, Y. Cheng, D. He, X. Pan, Activation of peroxymonosulfate
by iron oxychloride with hydroxylamine for
ciprofloxacin degradation and bacterial disinfection, Sci. Total
Environ., 799 (2021) 149506, doi: 10.1016/j.scitotenv.2021.149506.
- J. Xu, X. Li, J. Niu, M. Chen, J. Yue, Synthesis of direct Z-scheme
Bi3TaO7/CdS composite photocatalysts with enhanced
photocatalytic performance for ciprofloxacin degradation
under visible light irradiation, J. Alloys Compd., 834 (2020)
155061, doi: 10.1016/j.jallcom.2020.155061.
- L. Yang, Y. Luo, L. Yang, S. Luo, X. Luo, W. Dai, T. Li, Y. Luo,
Enhanced photocatalytic activity of hierarchical titanium
dioxide microspheres with combining carbon nanotubes as
“e-bridge”, J. Hazard. Mater., 367 (2019) 550–558.
- B. Weng, M. Qi, C. Han, Z. Tang, Y. Xu, Photocorrosion inhibition
of semiconductor-based photocatalysts: basic principle, current
development, and future perspective, ACS Catal., 9 (2019)
4642–4687.
- R. Dai, L. Zhang, J. Ning, W. Wang, Q. Wu, J. Yang, F. Zhang,
J.-a. Wang, New insights into tuning BiOBr photocatalysis
efficiency under visible-light for degradation of broad-spectrum
antibiotics: synergistic calcination and doping, J. Alloys
Compd., 887 (2021) 161481, doi: 10.1016/j.jallcom.2021.161481.
- J. Shang, W. Hao, X. Lv, Bismuth oxybromide with reasonable
photocatalytic reduction activity under visible light, ACS Catal.,
4 (2014) 954–961.
- S. Qu, Y. Xiong, J. Zhang, Graphene oxide and carbon
nanodots co-modified BiOBr nanocomposites with enhanced
photocatalytic 4-chlorophenol degradation and mechanism
insight, J. Colloid Interface Sci., 527 (2018) 78–86.
- H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang,
Fabrication of multiple heterojunctions with tunable visiblelight-
active photocatalytic reactivity in BiOBr-BiOI full-range
composites based on microstructure modulation and band
structures, ACS Appl. Mater. Interfaces, 7 (2015) 482–492.
- H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin,
X. Zhang, Y. Dai, In-situ ion exchange synthesis of the novel
Ag/AgBr/BiOBr hybrid with highly efficient decontamination
of pollutants, Chem. Commun. (Cambridge, U.K.), 47 (2011)
7054–7056.
- Y. Hou, Y. Gan, Z. Yu, X. Chen, L. Qian, B. Zhang, L. Huang,
J. Huang, Solar promoted azo dye degradation and energy
production in the bio-photoelectrochemical system with a
g-C3N4/BiOBr heterojunction photocathode, J. Power Sources,
371 (2017) 26–34.
- X. Zeng, Y. Wan, X. Gong, Z. Xu, Additive dependent synthesis
of bismuth oxybromide composites for photocatalytic removal
of the antibacterial agent ciprofloxacin and mechanism insight,
RSC Adv., 7 (2017) 36269–36278.
- X. Jiang, D. Kong, B. Luo, M. Wang, D. Zhang, X. Pu, Preparation
of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4
direct Z-scheme heterojunction photocatalyst with enhanced
visible-light photoactivity, Colloids Surf., A, 33 (2022) 127880,
doi: 10.1016/j.colsurfa.2021.127880.
- M. Zheng, X. Ma, J. Hu, X. Zhang, D. Li, W. Duan, Novel recyclable
BiOBr/Fe3O4/RGO composites with remarkable visible-light
photocatalytic activity, RSC Adv., 10 (2020) 19961–19973.
- L. Cao, D. Ma, Z. Zhou, C. Xu, C. Cao, P. Zhao, Q. Huang,
Efficient photocatalytic degradation of herbicide glyphosate
in water by magnetically separable and recyclable BiOBr/Fe3O4
nanocomposites under visible light irradiation, Chem. Eng. J.
(Lausanne), 368 (2019) 212–222.
- X. Jiang, Z. Wang, M. Zhang, M. Wang, R. Wu, X. Shi, B. Luo,
D. Zhang, X. Pu, H Li, A novel direct Z-scheme heterojunction
BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst
degradation activity under visible light irradiation, J. Alloys
Compd., 912 (2022) 165185, doi: 10.1016/j.jallcom.2022.165185.
- P. Xu, G.M. Zeng, D.L. Huang, C. Lai, Z. Wei, C. Huang,
G.X. Xie, Z.F. Liu, C.L. Feng, Use of iron oxide nanomaterials in
wastewater treatment: a review, Sci. Total Environ., 424 (2012)
1–10.
- S. Li, Z. Wang, X. Zhao, X. Yang, G. Liang, X. Xie, Insight into
enhanced carbamazepine photodegradation over biocharbased
magnetic photocatalyst Fe3O4/BiOBr/BC under visible
LED light irradiation, Chem. Eng. J. (Lausanne), 360 (2019)
600–611.
- L. Zhang, J. Lian, L. Wu, Z. Duan, J. Jiang, L. Zhao, Synthesis
of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite
as a magnetically separable photocatalyst, Langmuir, 30 (2014)
7006–7013.
- S. Choy, H.T. Bui, D.V. Lam, S.M. Lee, W. Kim, D.S. Hwang,
Photocatalytic exoskeleton: chitin nanofiber for retrievable
and sustainable TiO2 carriers for the decomposition of various
pollutants, Carbohydr. Polym., 271 (2021) 118413, doi: 10.1016/j.carbpol.2021.118413.
- V.V. Bazhenov, M. Wysokowski, I. Petrenko, D. Stawski,
P. Sapozhnikov, R. Born, A.L. Stelling, S. Kaiser, T. Jesionowski,
Preparation of monolithic silica-chitin composite under extreme
biomimetic conditions, Int. J. Biol. Macromol., 76 (2015) 33–38.
- S. Wu, B.D., A. Lu, Y. Wang, Q. Ye, L. Zhang, Biocompatible
chitin/carbon nanotubes composite hydrogels as neuronal
growth substrates, Carbohydr. Polym., 174 (2017) 830–840.
- K. Vimal Kumar, B.V. Appa Rao, N.Y. Hebalkar, Phosphorylated
chitin as a chemically modified polymer for ecofriendly
corrosion inhibition of copper in aqueous chloride environment,
Res. Chem. Intermed., 43 (2017) 5811–5828.
- M. Liu, Y. Zhang, J. Li, C. Zhou, Chitin-natural clay nanotubes
hybrid hydrogel, Int. J. Biol. Macromol., 58 (2013) 23–30.
- X. Lin, A. Yang, G. Huang, X. Zhou, Y. Zhai, X. Chen, E. McBean,
Treatment of aquaculture wastewater through chitin/ZnO
composite photocatalyst, Water, 11 (2019), doi: 10.3390/w11020310.
- B. Duan, X. Zheng, Z. Xia, X. Fan, L. Guo, J. Liu, Y. Wang, Q. Ye,
L. Zhang, Highly biocompatible nanofibrous microspheres
self-assembled from chitin in NaOH/urea aqueous solution
as cell carriers, Angew. Chem. Int. Ed., 54 (2015) 5152–5156.
- J. Xu, W. Meng, Y. Zhang, L. Li, C. Guo, Photocatalytic
degradation of tetrabromobisphenol A by mesoporous BiOBr:
efficacy, products and pathway, Appl. Catal., B, 107 (2011)
355–362.
- Y. Peng, J. Xu, T. Liu, Y.G. Mao, Controlled synthesis of onedimensional
BiOBr with exposed (110) facets and enhanced
photocatalytic activity, CrystEngComm, 19 (2017) 6473–6480.
- P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu,
P. Ding, Y. Wu, Y. Xiong, Visible-light-driven nitrogen fixation
catalyzed by Bi5O7Br nanostructures: enhanced performance by
oxygen vacancies, J. Am. Chem. Soc., 142 (2020) 12430–12439.
- Y. Liu, J. Li, J. Li, X. Yan, F. Wang, W. Yang, D.H.L. Ng, J. Yang,
Active magnetic Fe3+-doped BiOBr micromotors as efficient
solar photo-Fenton catalyst, J. Cleaner Prod., 252 (2020) 119573,
doi: 10.1016/j.jclepro.2019.119573.
- X. Xie, S. Li, K. Qi, Z. Wang, Photoinduced synthesis of green
photocatalyst Fe3O4/BiOBr/CQDs derived from corncob
biomass for carbamazepine degradation: the role of selectively
more CQDs decoration and Z-scheme structure, Chem. Eng. J.
(Lausanne), 420 (2021) 129705, doi: 10.1016/j.cej.2021.129705.
- Y. Wu, H. Ji, Q. Liu, Z. Sun, P. Li, P. Ding, M. Guo, X. Yi, W.
Xu, C. Wang, S. Gao, Q. Wang, W. Liu, S. Chen, Visible light
photocatalytic degradation of sulfanilamide enhanced by Mo
doping of BiOBr nanoflowers, J. Hazard. Mater., 424 (2021)
127563, doi: 10.1016/j.jhazmat.2021.127563.
- X. Yang, X. Zhang, Z. Wang, S. Li, J. Zhao, G. Liang, X. Xie,
Mechanistic insights into removal of norfloxacin from water
using different natural iron ore – biochar composites: more rich
free radicals derived from natural pyrite-biochar composites
than hematite-biochar composites, Appl. Catal., B, 255 (2019)
117752, doi: 10.1016/j.apcatb.2019.117752.
- Y. Zhou, T. Cai, S. Liu, Y. Liu, H. Chen, Z. Li, J. Du, Z. Lei,
H. Peng, N-doped magnetic three-dimensional carbon
microspheres@TiO2 with a porous architecture for enhanced
degradation of tetracycline and methyl orange via adsorption/photocatalysis synergy, Chem. Eng. J. (Lausanne), 411 (2021)
128615, doi: 10.1016/j.cej.2021.128615.
- F. Wang, L. Liang, L. Shi, M. Liu, J. Sun, CO2-assisted synthesis
of mesoporous carbon/C-doped ZnO composites for enhanced
photocatalytic performance under visible light, Dalton Trans.,
43 (2014) 16441–16449.
- Y. Jin, Z. Lu, P. Zhang, F. Li, T. Li, L. Zhang, W. Fan, C. Hu,
Enhanced photocatalytic efficiency by direct photoexcited
electron transfer from pollutants adsorbed on the surface
valence band of BiOBr modified with graphitized C, J. Hazard.
Mater., 424 (2022) 127502, doi: 10.1016/j.jhazmat.2021.127502.
- R. Bibi, Q. Shen, L. Wei, D. Hao, N. Li, J. Zhou, Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven
photocatalytic activity toward RhB dye degradation, RSC Adv.,
8 (2018) 2048–2058.
- A. Kumar, M. Khan, X. Zeng, I.M.C. Lo, Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: a magnetically
recyclable direct contact Z-scheme nanophotocatalyst for
enhanced photocatalytic removal of ibuprofen from real
sewage effluent under visible light, Chem. Eng. J. (Lausanne),
353 (2018) 645–656.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
J. Rouquerol, T. Siemieniewska, Reporting physisorption data
for gas solid systems with special reference to the determination
surface-area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
- J.S. Valente, F. Tzompantzi, J. Prince, J.G.H. Cortez, R. Gomez,
Adsorption and photocatalytic degradation of phenol and
2,4-dichlorophenoxiacetic acid by Mg–Zn–Al layered double
hydroxides, Appl. Catal., B, 90 (2009) 330–338.
- J. Di, J. Xia, Y. Ge, H. Li, H. Ji, H. Xu, Q. Zhang, H. Li, M. Li,
Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with
enhanced photocatalytic activity toward organic pollutants
degradation and mechanism insight, Appl. Catal., B, 168–169
(2015) 51–61.
- Y. Gu, Z. Xu, L. Guo, Y. Wan, ZnO nanoplate-induced phase
transformation synthesis of the composite ZnS/In(OH)3/In2S3
with enhanced visible-light photodegradation activity of
pollutants, CrystEngComm, 16 (2014) 10997–11006.
- Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2−graphene
nanocomposites for gas-phase photocatalytic degradation of
volatile aromatic pollutant: is TiO2−graphene truly different
from other TiO2−carbon composite materials?, ACS Nano,
4 (2010) 7303–7314.
- H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P. Wang,
T. Xie, Effect of BiVO4 crystalline phases on the photoinduced
carriers behavior and photocatalytic activity, J. Phys. Chem. C,
116 (2012) 2425–2430.
- K. Nagaveni, M.S. Hegde, G. Madras, Structure and
photocatalytic activity of Ti1–xMxO2±δ (M = W, V, Ce, Zr, Fe,
and Cu) synthesized by solution combustion method, J. Phys.
Chem. B, 108 (2004) 20204–20212.
- C. Du, S. Nie, C. Zhang, T. Wang, S. Wang, J. Zhang, C. Yu,
Z. Lu, S. Dong, J. Feng, H. Liu, J. Sun, Dual-functional
Z-scheme
CdSe/Se/BiOBr photocatalyst: generation of hydrogen peroxide
and efficient degradation of ciprofloxacin, J. Colloid Interface
Sci., 606 (2022) 1715–1728.