References

  1. M. Bilal, S.S. Ashraf, D. Barceló, H.M.N. Iqbal, Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment, Sci. Total Environ., 691 (2019) 1190–1211.
  2. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  3. H. Luo, Y. Zeng, Y. Cheng, D. He, X. Pan, Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection, Sci. Total Environ., 799 (2021) 149506, doi: 10.1016/j.scitotenv.2021.149506.
  4. J. Xu, X. Li, J. Niu, M. Chen, J. Yue, Synthesis of direct Z-scheme Bi3TaO7/CdS composite photocatalysts with enhanced photocatalytic performance for ciprofloxacin degradation under visible light irradiation, J. Alloys Compd., 834 (2020) 155061, doi: 10.1016/j.jallcom.2020.155061.
  5. L. Yang, Y. Luo, L. Yang, S. Luo, X. Luo, W. Dai, T. Li, Y. Luo, Enhanced photocatalytic activity of hierarchical titanium dioxide microspheres with combining carbon nanotubes as “e-bridge”, J. Hazard. Mater., 367 (2019) 550–558.
  6. B. Weng, M. Qi, C. Han, Z. Tang, Y. Xu, Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective, ACS Catal., 9 (2019) 4642–4687.
  7. R. Dai, L. Zhang, J. Ning, W. Wang, Q. Wu, J. Yang, F. Zhang, J.-a. Wang, New insights into tuning BiOBr photocatalysis efficiency under visible-light for degradation of broad-spectrum antibiotics: synergistic calcination and doping, J. Alloys Compd., 887 (2021) 161481, doi: 10.1016/j.jallcom.2021.161481.
  8. J. Shang, W. Hao, X. Lv, Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light, ACS Catal., 4 (2014) 954–961.
  9. S. Qu, Y. Xiong, J. Zhang, Graphene oxide and carbon nanodots co-modified BiOBr nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight, J. Colloid Interface Sci., 527 (2018) 78–86.
  10. H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visiblelight- active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures, ACS Appl. Mater. Interfaces, 7 (2015) 482–492.
  11. H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, Y. Dai, In-situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants, Chem. Commun. (Cambridge, U.K.), 47 (2011) 7054–7056.
  12. Y. Hou, Y. Gan, Z. Yu, X. Chen, L. Qian, B. Zhang, L. Huang, J. Huang, Solar promoted azo dye degradation and energy production in the bio-photoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode, J. Power Sources, 371 (2017) 26–34.
  13. X. Zeng, Y. Wan, X. Gong, Z. Xu, Additive dependent synthesis of bismuth oxybromide composites for photocatalytic removal of the antibacterial agent ciprofloxacin and mechanism insight, RSC Adv., 7 (2017) 36269–36278.
  14. X. Jiang, D. Kong, B. Luo, M. Wang, D. Zhang, X. Pu, Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity, Colloids Surf., A, 33 (2022) 127880, doi: 10.1016/j.colsurfa.2021.127880.
  15. M. Zheng, X. Ma, J. Hu, X. Zhang, D. Li, W. Duan, Novel recyclable BiOBr/Fe3O4/RGO composites with remarkable visible-light photocatalytic activity, RSC Adv., 10 (2020) 19961–19973.
  16. L. Cao, D. Ma, Z. Zhou, C. Xu, C. Cao, P. Zhao, Q. Huang, Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation, Chem. Eng. J. (Lausanne), 368 (2019) 212–222.
  17. X. Jiang, Z. Wang, M. Zhang, M. Wang, R. Wu, X. Shi, B. Luo, D. Zhang, X. Pu, H Li, A novel direct Z-scheme heterojunction BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst degradation activity under visible light irradiation, J. Alloys Compd., 912 (2022) 165185, doi: 10.1016/j.jallcom.2022.165185.
  18. P. Xu, G.M. Zeng, D.L. Huang, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, C.L. Feng, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  19. S. Li, Z. Wang, X. Zhao, X. Yang, G. Liang, X. Xie, Insight into enhanced carbamazepine photodegradation over biocharbased magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation, Chem. Eng. J. (Lausanne), 360 (2019) 600–611.
  20. L. Zhang, J. Lian, L. Wu, Z. Duan, J. Jiang, L. Zhao, Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst, Langmuir, 30 (2014) 7006–7013.
  21. S. Choy, H.T. Bui, D.V. Lam, S.M. Lee, W. Kim, D.S. Hwang, Photocatalytic exoskeleton: chitin nanofiber for retrievable and sustainable TiO2 carriers for the decomposition of various pollutants, Carbohydr. Polym., 271 (2021) 118413, doi: 10.1016/j.carbpol.2021.118413.
  22. V.V. Bazhenov, M. Wysokowski, I. Petrenko, D. Stawski, P. Sapozhnikov, R. Born, A.L. Stelling, S. Kaiser, T. Jesionowski, Preparation of monolithic silica-chitin composite under extreme biomimetic conditions, Int. J. Biol. Macromol., 76 (2015) 33–38.
  23. S. Wu, B.D., A. Lu, Y. Wang, Q. Ye, L. Zhang, Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates, Carbohydr. Polym., 174 (2017) 830–840.
  24. K. Vimal Kumar, B.V. Appa Rao, N.Y. Hebalkar, Phosphorylated chitin as a chemically modified polymer for ecofriendly corrosion inhibition of copper in aqueous chloride environment, Res. Chem. Intermed., 43 (2017) 5811–5828.
  25. M. Liu, Y. Zhang, J. Li, C. Zhou, Chitin-natural clay nanotubes hybrid hydrogel, Int. J. Biol. Macromol., 58 (2013) 23–30.
  26. X. Lin, A. Yang, G. Huang, X. Zhou, Y. Zhai, X. Chen, E. McBean, Treatment of aquaculture wastewater through chitin/ZnO composite photocatalyst, Water, 11 (2019), doi: 10.3390/w11020310.
  27. B. Duan, X. Zheng, Z. Xia, X. Fan, L. Guo, J. Liu, Y. Wang, Q. Ye, L. Zhang, Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers, Angew. Chem. Int. Ed., 54 (2015) 5152–5156.
  28. J. Xu, W. Meng, Y. Zhang, L. Li, C. Guo, Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and pathway, Appl. Catal., B, 107 (2011) 355–362.
  29. Y. Peng, J. Xu, T. Liu, Y.G. Mao, Controlled synthesis of onedimensional BiOBr with exposed (110) facets and enhanced photocatalytic activity, CrystEngComm, 19 (2017) 6473–6480.
  30. P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu, P. Ding, Y. Wu, Y. Xiong, Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies, J. Am. Chem. Soc., 142 (2020) 12430–12439.
  31. Y. Liu, J. Li, J. Li, X. Yan, F. Wang, W. Yang, D.H.L. Ng, J. Yang, Active magnetic Fe3+-doped BiOBr micromotors as efficient solar photo-Fenton catalyst, J. Cleaner Prod., 252 (2020) 119573, doi: 10.1016/j.jclepro.2019.119573.
  32. X. Xie, S. Li, K. Qi, Z. Wang, Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: the role of selectively more CQDs decoration and Z-scheme structure, Chem. Eng. J. (Lausanne), 420 (2021) 129705, doi: 10.1016/j.cej.2021.129705.
  33. Y. Wu, H. Ji, Q. Liu, Z. Sun, P. Li, P. Ding, M. Guo, X. Yi, W. Xu, C. Wang, S. Gao, Q. Wang, W. Liu, S. Chen, Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers, J. Hazard. Mater., 424 (2021) 127563, doi: 10.1016/j.jhazmat.2021.127563.
  34. X. Yang, X. Zhang, Z. Wang, S. Li, J. Zhao, G. Liang, X. Xie, Mechanistic insights into removal of norfloxacin from water using different natural iron ore – biochar composites: more rich free radicals derived from natural pyrite-biochar composites than hematite-biochar composites, Appl. Catal., B, 255 (2019) 117752, doi: 10.1016/j.apcatb.2019.117752.
  35. Y. Zhou, T. Cai, S. Liu, Y. Liu, H. Chen, Z. Li, J. Du, Z. Lei, H. Peng, N-doped magnetic three-dimensional carbon microspheres@TiO2 with a porous architecture for enhanced degradation of tetracycline and methyl orange via adsorption/photocatalysis synergy, Chem. Eng. J. (Lausanne), 411 (2021) 128615, doi: 10.1016/j.cej.2021.128615.
  36. F. Wang, L. Liang, L. Shi, M. Liu, J. Sun, CO2-assisted synthesis of mesoporous carbon/C-doped ZnO composites for enhanced photocatalytic performance under visible light, Dalton Trans., 43 (2014) 16441–16449.
  37. Y. Jin, Z. Lu, P. Zhang, F. Li, T. Li, L. Zhang, W. Fan, C. Hu, Enhanced photocatalytic efficiency by direct photoexcited electron transfer from pollutants adsorbed on the surface valence band of BiOBr modified with graphitized C, J. Hazard. Mater., 424 (2022) 127502, doi: 10.1016/j.jhazmat.2021.127502.
  38. R. Bibi, Q. Shen, L. Wei, D. Hao, N. Li, J. Zhou, Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation, RSC Adv., 8 (2018) 2048–2058.
  39. A. Kumar, M. Khan, X. Zeng, I.M.C. Lo, Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: a magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light, Chem. Eng. J. (Lausanne), 353 (2018) 645–656.
  40. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas solid systems with special reference to the determination surface-area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  41. J.S. Valente, F. Tzompantzi, J. Prince, J.G.H. Cortez, R. Gomez, Adsorption and photocatalytic degradation of phenol and 2,4-dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides, Appl. Catal., B, 90 (2009) 330–338.
  42. J. Di, J. Xia, Y. Ge, H. Li, H. Ji, H. Xu, Q. Zhang, H. Li, M. Li, Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight, Appl. Catal., B, 168–169 (2015) 51–61.
  43. Y. Gu, Z. Xu, L. Guo, Y. Wan, ZnO nanoplate-induced phase transformation synthesis of the composite ZnS/In(OH)3/In2S3 with enhanced visible-light photodegradation activity of pollutants, CrystEngComm, 16 (2014) 10997–11006.
  44. Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2−graphene truly different from other TiO2−carbon composite materials?, ACS Nano, 4 (2010) 7303–7314.
  45. H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P. Wang, T. Xie, Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity, J. Phys. Chem. C, 116 (2012) 2425–2430.
  46. K. Nagaveni, M.S. Hegde, G. Madras, Structure and photocatalytic activity of Ti1–xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method, J. Phys. Chem. B, 108 (2004) 20204–20212.
  47. C. Du, S. Nie, C. Zhang, T. Wang, S. Wang, J. Zhang, C. Yu, Z. Lu, S. Dong, J. Feng, H. Liu, J. Sun, Dual-functional
    Z-scheme CdSe/Se/BiOBr photocatalyst: generation of hydrogen peroxide and efficient degradation of ciprofloxacin, J. Colloid Interface Sci., 606 (2022) 1715–1728.