References

  1. H. Li, R. Cheng, Z. Liu, C. Du, Waste control by waste: Fenton–like oxidation of phenol over Cu modified ZSM–5 from coal gangue, Sci. Total Environ., 683 (2019) 638–647.
  2. A. Dargahi, H.R. Barzoki, M. Vosoughi, S. Ahmad Mokhtari, Enhanced electrocatalytic degradation
    of 2,4-dinitrophenol (2,4-DNP) in three-dimensional sono-electrochemical (3D/SEC) process equipped with Fe/SBA-15 nanocomposite particle electrodes: degradation pathway and application for real wastewater, Arabian J. Chem., 15 (2022) 103801, doi: 10.1016/j.arabjc.2022.103801.
  3. E. Brillas, S. Garcia-Segura, Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: a review on the relevance of phenol as model molecule, Sep. Purif. Technol., 237 (2020) 116337, doi: 10.1016/j.seppur.2019.116337.
  4. P.J. Ong, A. Priyadarshini, S.W. Tay, L. Hong, Affinity filtration by a coating of pyrolyzed fish scale colloids on microfibres for removing phenol/quinone compounds from alcohols, J. Environ. Chem. Eng., 9 (2021) 106097, doi: 10.1016/j.jece.2021.106097.
  5. A. Dargahi, M.R. Samarghandi, A. Shabanloo, M.M. Mahmoudi, H.Z. Nasab, Statistical modeling of phenolic compounds adsorption onto low-cost adsorbent prepared from aloe vera leaves wastes using CCD-RSM optimization: effect of parameters, isotherm, and kinetic studies, Biomass Convers. Biorefin., (2021) 1–15, doi: 10.1007/s13399-021-01601-y.
  6. A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi, H. Biglari, Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol, Toxin Rev., 40 (2019) 189–197.
  7. R. Shokoohi, H. Movahedian, A. Dargahi, A.J. Jafari, A. Parvaresh, Survey on efficiency of BF/AS integrated biological system in phenol removal of wastewater, Desal. Water Treat., 82 (2017) 315–321.
  8. P. Gao, Y. Song, M. Hao, A. Zhu, H. Yang, S. Yang, An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction, Sep. Purif. Technol., 201 (2018) 238–243.
  9. R. Sun, J. Yang, R. Huang, C. Wang, Controlled carbonization of microplastics loaded nano zero-valent iron for catalytic degradation of tetracycline, Chemosphere, 3030 (2022) 135123, doi: 10.1016/j.chemosphere.2022.135123.
  10. J. Gao, Y. Liu, X. Xia, L. Wang, W. Dong, Fe1–xZnxS ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol, J. Hazard. Mater., 353 (2018) 393–400.
  11. J. Wang, T. Xie, G. Han, Q. Zhu, Y. Wang, Y. Peng, S. Liu, Z. Yao, SiO2 mediated templating synthesis of γ-Fe2O3/MnO2 as peroxymonosulfate activator for enhanced phenol degradation dominated by singlet oxygen, Appl. Surf. Sci., 560 (2021) 149984, doi: 10.1016/j.apsusc.2021.149984.
  12. J. Zhang, S. Zhang, B. Liu, Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: a review, J. Cleaner Prod., 250 (2020) 119507, doi: 10.1016/j.jclepro.2019.119507.
  13. C. Shi, X. Wang, S. Zhou, X. Zuo, C. Wang, Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: a review, J. Water Process Eng., 47 (2022) 102666, doi: 10.1016/j.jwpe.2022.102666.
  14. J. Lan, Y. Sun, P. Huang, Y. Du, W. Zhan, T.C. Zhang, D. Du, Using electrolytic manganese residue to prepare novel nanocomposite catalysts for efficient degradation of azo dyes in Fenton-like processes, Chemosphere, 252 (2020) 126487, doi: 10.1016/j.chemosphere.2020.126487.
  15. N. Nasuha, B.H. Hameed, P.U. Okoye, Dark-Fenton oxidative degradation of methylene blue and acid blue 29 dyes using sulfuric acid-activated slag of the steel-making process, J. Environ. Chem. Eng., 9 (2021) 104831, doi: 10.1016/j.jece.2020.104831.
  16. Y. Xu, E. Hu, D. Xu, Q. Guo, Activation of peroxymonosulfate by bimetallic CoMn oxides loaded on coal fly ash-derived SBA-15 for efficient degradation of Rhodamine B, Sep. Purif. Technol., 274 (2021) 119081, doi: 10.1016/j.seppur.2021.119081.
  17. B. Qiu, C. Yang, Q. Shao, Y. Liu, H. Chu, Recent advances on industrial solid waste catalysts for improving the quality of biooil from biomass catalytic cracking: a review, Fuel, 315 (2022) 123218, doi: 10.1016/j.fuel.2022.123218.
  18. J. Wang, S. Zhang, D. Xu, H. Zhang, Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking, Fuel, 323 (2022) 124278, doi: 10.1016/j.fuel.2022.124278.
  19. B. Das, K. Mohanty, A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud, Renewable Energy, 143 (2019) 1791–1811.
  20. M. Wang, X. Liu, Applications of red mud as an environmental remediation material: a review, J. Hazard. Mater., 408 (2021) 124420, doi: 10.1016/j.jhazmat.2020.124420.
  21. C. Wang, X. Zhang, R. Sun, Y. Cao, Neutralization of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application, J. Cleaner Prod., 271 (2020) 122525, doi: 10.1016/j.jclepro.2020.122525.
  22. L. Wang, B. Si, X. Han, W. Yi, Z. Li, A. Zhang, Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis, Ind. Crops Prod., 184 (2022) 114973, doi: 10.1016/j.indcrop.2022.114973.
  23. S. Agrawal, N. Dhawan, Evaluation of red mud as a polymetallic source – a review, Miner. Eng., 171 (2021) 107084, doi: 10.1016/j.mineng.2021.107084.
  24. J. Ba, G. Wei, L. Zhang, Q. Li, Z. Li, J. Chen, Preparation and application of a new Fenton-like catalyst from red mud for degradation of sulfamethoxazole, Environ. Technol., 43 (2022) 2922–2933.
  25. R. Sun, X. Zhang, C. Wang, Y. Cao, Co-carbonization of red mud and waste sawdust for functional application as Fenton catalyst: evaluation of catalytic activity and mechanism, J. Environ. Chem. Eng., 9 (2021) 105368, doi: 10.1016/j.jece.2021.105368.
  26. L. Yu, Y. Liu, H. Wei, L. Chen, L. An, Developing a highquality catalyst from the pyrolysis of anaerobic granular sludge: its application for m-cresol degradation, Chemosphere, 255 (2020) 126939, doi: 10.1016/j.chemosphere.2020.126939.
  27. H. Habibi, D. Piruzian, S. Shakibania, Z. Pourkarimi, M. Mokmeli, The effect of carbothermal reduction on the physical and chemical separation of the red mud components, Miner. Eng., 173 (2021) 107216, doi: 10.1016/j.mineng.2021.107216.
  28. Y. Zhang, N. Zhang, T. Wang, H. Huang, Y. Chen, Z. Li, Z. Zou, Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3, Appl. Catal., B, 245 (2019) 410–419.
  29. N.A. Fathy, S.E. El-Shafey, O.I. El-Shafey, W.S. Mohamed, Oxidative degradation of RB19 dye
    by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2, J. Environ. Chem. Eng., 1 (2013) 858–864.
  30. C. Wang, R. Sun, R. Huang, Highly dispersed iron-doped biochar derived from sawdust for Fenton-like degradation of toxic dyes, J. Cleaner Prod., 297 (2021) 126681, doi: 10.1016/j.jclepro.2021.126681.
  31. B. Li, Z.-Y. Yan, X.-N. Liu, C. Tang, J. Zhou, X.-Y. Wu, P. Wei, H.-H. Jia, X.-Y. Yong, Enhanced bio-electro-Fenton degradation of phenolic compounds based on a novel Fe–Mn/graphite felt composite cathode, Chemosphere, 234 (2019) 260–268.
  32. N. Omrani, A. Nezamzadeh-Ejhieh, Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite, Sep. Purif. Technol., 235 (2020) 116228, doi: 10.1016/j.seppur.2019.116228.
  33. X. Xu, Y. Feng, Z. Chen, S. Wang, G. Wu, T. Huang, J. Ma, G. Wen, Activation of peroxymonosulfate
    by CuCo2O4-GO for efficient degradation of bisphenol A from aqueous environment, Sep. Purif. Technol., 251 (2020) 117351, doi: 10.1016/j.seppur.2020.117351.
  34. E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Red mud and fly ash supported Co catalysts for phenol oxidation, Catal. Today, 190 (2012) 68–72.
  35. B. Liu, W. Song, H. Wu, Y. Xu, Y. Sun, Y. Yu, H. Zheng, S. Wan, Enhanced oxidative degradation of norfloxacin using peroxymonosulfate activated by oily sludge carbon-based nanoparticles CoFe2O4/OSC, Chem. Eng. J., 400 (2020) 125947, doi: 10.1016/j.cej.2020.125947.
  36. C. Wang, R. Huang, R. Sun, J. Yang, D.D. Dionysiou, Microplastics separation and subsequent carbonization: synthesis, characterization, and catalytic performance of iron/carbon nanocomposite, J. Cleaner Prod., 330 (2022) 129901, doi: 10.1016/j.jclepro.2021.129901.
  37. T. Zhang, Q. Ma, M. Zhou, C. Li, J. Sun, W. Shi, S. Ai, Degradation of methylene blue by a heterogeneous Fenton reaction catalyzed by FeCo2O4-NC nanocomposites derived by ZIFs, Powder Technol., 383 (2021) 212–219.
  38. H. Wang, M. Jing, Y. Wu, W. Chen, Y. Ran, Effective degradation of phenol via Fenton reaction over CuNiFe layered double hydroxides, J. Hazard. Mater., 353 (2018) 53–61.
  39. W. Shaheen, K. Hong, Thermal characterization and physicochemical properties of Fe2O3–Mn2O3/Al2O3 system, Thermochim. Acta, 381 (2002) 153–164.