References

  1. T. Adane, A.T. Adugna, E. Alemayehu, Textile industry effluent treatment techniques, J. Chem., 2021 (2021) 1–14, doi: 10.1155/2021/5314404.
  2. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage., 182 (2016) 351–366.
  3. R.V. Kandisa, K.N. Saibaba, K.B. Shaik, R. Gopinath, Dye removal by adsorption: a review, J. Biorem. Biodegrad., 7 (2016) 371, doi: 10.4172/2155-6199.1000371.
  4. Z. Wang, M. Xue, K. Huang, Z. Liu, Textile Dyeing Wastewater Treatment, P.J. Hauser, Ed., Advances in Treating Textile Effluent, InTechOpen, 2011, pp. 91–116, doi: 10.5772/22670.
  5. P. Bhatt, A. Rani, Textile dyeing and printing industry: an environmental hazard, Asian Dyer, 10 (2013) 51–54.
  6. J. Wang, Z. Bai, Fe-Based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater, Chem. Eng. J., 312 (2017) 79–98.
  7. C. Zaharia, M.R. Tudora, I.C. Stancu, B. Galateanu, A. Lungu, C. Cincu, Characterization and deposition behaviour of silk hydrogels soaked in simulated body fluid, Mater. Sci. Eng., 32 (2012) 945–952.
  8. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal-a review, J. Environ. Manage., 90 (2009) 2313–2342.
  9. W. Konicki, D. Sibera, E. Mijoska, Z. Lendzion-Bieluń, U. Narkiewicz, Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles, J. Colloid Interface Sci., 398 (2013) 152–160.
  10. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innovation, 3 (2019) 275–290.
  11. U.B. Deshannavar, G.M. Ratnamala, P.B. Kalburgi, M. El-Harbawi, A. Agarwal, M. Shet, M. Teli, P. Bhandare, Optimization, kinetic and equilibrium studies of disperse yellow 22 dye removal from aqueous solutions using Malaysian teak wood sawdust as adsorbent, Indian Chem. Eng., 58 (2016) 12–28.
  12. A. Nasar, S. Shakoor, Remediation of Dyes from Industrial Wastewater Using Low-Cost Adsorbents, Inamuddin, A. Al-Ahmed, Eds., Applications of Adsorption and Ion Exchange Chromatography in Wastewater Treatment, Materials Research Foundations, Millersville PA, USA, 2017, pp. 1–33, doi: 10.21741/9781945291333-1.
  13. S. Senthil Kumar, P. Kalaamani, C.V. Subburaam, Liquid-phase adsorption of Crystal violet onto activated carbons derived from male flowers of a coconut tree, J. Hazard. Mater., 136 (2006) 800–808.
  14. H. He, S. Yang, K. Yu, Y. Ju, C. Sun, L. Wang, Microwave induced catalytic degradation of Crystal violet in nano-nickel dioxide suspensions, J. Hazard. Mater., 173 (2010) 393–400.
  15. S. Mani, R.N. Bhargava, Exposure to Crystal violet, its toxic, genotoxic, and carcinogenic effects on the environment and its degradation and detoxification for environmental safety, Rev. Environ. Contam. Toxicol., 237 (2016) 71–104.
  16. X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G.L. Dotto, M.K.A Shayeb, H. Belmabrouk,
    A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of Crystal violet and methylene blue from aqueous solutions, Chem. Eng. J., 391 (2020) 123617, doi: 10.1016/j.cej.2019.123617.
  17. M. Otero, F. Rozada, L.F. Calvo, A.I. Gracía, A. Morán, Elimination of organic water pollutants using adsorbents obtained from sewage sludge, Dyes Pigm., 57 (2003) 55–65.
  18. Q. Zhang, T. Zhang, T. He, L. Chen, Removal of Crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents, Appl. Clay Sci., 90 (2014) 1–5.
  19. M.R. Gadekar, M.M. Ahammed, Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks, Desal. Water Treat., 57 (2016) 26392–26400.
  20. A. Ikhlaq, M. Kazim, F. Javed, K.S. Joya, F. Anwar, Combined catalytic ozonation and electro flocculation process for the removal of basic yellow 28 in wastewater, Desal. Water Treat., 127 (2018) 354–363.
  21. S. Mishra, P. Chowdhary, R.N. Bharagava, Chapter 1 – Conventional Methods for the Removal of Industrial Pollutants, Their Merits and Demerits, R.N. Bharagava, P. Chowdhary, Eds., Emerging and Eco-Friendly Approaches for Waste Management, Springer Nature Singapore Pte Ltd., Singapore, 2019, pp. 1–31.
  22. M.C. Collivignarelli, A. Abbà, M.C. Miino, S. Damiani, Treatments for colour removal from wastewater: state of the art, J. Environ. Manage., 236 (2019) 727–745.
  23. A. Ikhlaq, T. Aslam, A.M. Zafar, F. Javed, H.M.S. Munir, Combined ozonation and adsorption system for the removal of heavy metals from municipal wastewater: effect of COD removal, Desal. Water Treat., 159 (2019) 304–309.
  24. A. Ikhlaq, F. Javed, M.S. Munir, S. Hussain, K.S. Joya, A.M. Zafar, Application of heterogeneous iron loaded zeolite A catalyst in photo-Fenton process for the removal of safranin in wastewater, Desal. Water Treat., 148 (2019) 152–161.
  25. A. Ikhlaq, H.M.S. Munir, A. Khan, F. Javed, K.S. Joya, Comparative study of catalytic ozonation and Fenton-like processes using iron-loaded rice husk ash as catalyst for the removal of methylene blue in wastewater, Ozone Sci. Eng., 41 (2019) 250–260.
  26. H.S. Munir, F. Nadeem, I. Amir, K. Mohsin, J. Farhan, M. Hina, Removal of colour and COD from paper and pulp industry wastewater by ozone and combined ozone/UV process, Desal. Water Treat., 137 (2019) 154–161.
  27. F. Javed, N. Feroze, N. Ramzan, A. Ikhlaq, M. Kazmi, H.M.S. Munir, Treatment of Reactive Red 241 dye by electro coagulation/biosorption coupled process in a new hybrid reactor, Desal. Water Treat., 166 (2019) 83–91.
  28. N. Noreena, M. Kazmib, N. Ferozea, F. Javedd, H. Ghulam, H.M.S.M. Qutabd, Treatment of methylene blue in aqueous solution by electrocoagulation/micro-crystalline cellulosic adsorption combined process, Desal. Water Treat., 203 (2020) 379–387.
  29. F. Deniz, R. Aysun Kepekci, Dye biosorption onto pistachio by-product: a green environmental engineering approach, J. Mol. Liq., 219 (2016) 194–200.
  30. I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet, A. Mittal, A. Núñez-Delgado, Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review, J. Environ. Manage., 261 (2020) 110236, doi: 10.1016/j.jenvman.2020.110236.
  31. A. Mittal, R. Ahmad, I. Hasan, Poly(methyl methacrylate)-grafted alginate/Fe3O4 nanocomposite: synthesis and its application for the removal of heavy metal ions, Desal. Water Treat., 57 (2016) 19820–19833.
  32. A. Mittal, R. Ahmad, I. Hasan, Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution, Desal. Water Treat., 57 (2016) 15133–15145.
  33. N. Ariffin, M.M.A.B. Abdullah, M.R.R.M.A. Zainol, M.F. Murshed, M.A. Faris, R. Bayuaji, Review on adsorption of heavy metal in wastewater by using geopolymer, MATEC Web Conf., 97 (2017) 01023, doi: 10.1051/matecconf/20179701023.
  34. N. Sivarajasekar, R. Baskar, Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review, J. Chem. Pharm. Res., 7 (2015) 737–748.
  35. S. Dawood, T. Sen, Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents, J. Chem. Proc. Eng., 1 (2014) 1–11.
  36. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, Desalination, 280 (2011) 1–13.
  37. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  38. M. Brienza, I.A. Katsoyiannis, Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater, Sustainability, 9 (2017) 1604, doi: 10.3390/su9091604.
  39. E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández-González, Advanced oxidation processes for the removal of antibiotics from water. An overview, Water, 12 (2020) 102, doi: 10.3390/w12010102.
  40. H.M.S. Munir, N. Feroze, N. Ramzan, M. Sagir, M. Babar, M.S. Tahir, J. Shamshad, M. Mubashir, K.S. Khoo,
    Fe-zeolite catalyst for ozonation of pulp and paper wastewater for sustainable water resources, Chemosphere, 297 (2022) 134031, doi: 10.1016/j.chemosphere.2022.134031.
  41. A. Ikhlaq, F. Javed, A. Niaz, H.M.S. Munir, F. Qi, Combined UV catalytic ozonation process on iron loaded peanut shell ash for the removal of methylene blue from aqueous solution, Desal. Water Treat., 200 (2020) 231–240.
  42. S. Nazir, A. Ikhlaq, F. Javed, Z. Asif, H.M.S. Munir, S. Sajjad, Catalytic ozonation on iron-loaded rice husk ash/peanut shell ash for the removal of erythromycin in water, Environ. Eng. Manage. J., 19 (2020) 829–837.
  43. S.P. Druzian, N.P. Zanatta, R.K. Borchardt, L.N. Côrtes, A.F. Streit, E.C. Severo, J.O. Gonçalves, E.L. Foletto, E.C. Lima, G.L. Dotto, Chitin-psyllium based aerogel for the efficient removal of Crystal violet from aqueous solutions, Int. J. Biol. Macromol., 15 (2021) 366–376.
  44. D.O. Omokpariola, Experimental modelling Studies on the removal of Crystal violet, methylene blue and malachite green dyes using Theobroma cocoa (Cocoa Pod Powder), J. Chem. Lett., 2 (2021) 9–24.
  45. Y.H. Wu, K. Xue, Q.L. Ma, T. Ma, Y.L. Ma, Y.G. Sun, W.X. Ji, Removal of hazardous Crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag, Microporous Mesoporous Mater., 312 (2021) 110742, doi: 10.1016/j.micromeso.2020.110742.
  46. K.M. Elsherif, A. El-Dali, A.A. Alkarewi, A.M. Ewlad-Ahmed, A. Treban, Adsorption of Crystal violet dye onto olive leaves powder: equilibrium and kinetic studies, Chem. Int., 7 (2021) 79–89.
  47. R. Ahmad, Studies on adsorption of Crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP), J. Hazard. Mater., 171 (2009) 767–773.
  48. K. Mohanty, J.T. Naidu, B.C. Meikap, M.N. Biswas, Removal of Crystal violet from wastewater by activated carbons prepared from rice husk, Ind. Eng. Chem. Res., 45 (2006) 5165–5171.
  49. M. Alshabanat, G. Alsenani, R. Almufarij, Removal of Crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique, J. Chem., 2013 (2013) 1–6.
  50. H.J. Kumari, P. Krishnamoorthy, T.K. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of Crystal violet dye from waste water by adsorption onto TLAC/chitosan composite: a novel low-cost adsorbent, Int. J. Biol. Macromol., 96 (2017) 324–333.
  51. S. Chakraborty, A. Mukherjee, S. Das, N.R. Maddela, S. Iram, P. Das, Study on isotherm, kinetics, and thermodynamics of adsorption of Crystal violet dye by calcium oxide modified fly ash, Environ. Eng. Res., 26 (2021) 190372, doi: 10.4491/eer.2019.372.
  52. S. Sultana, K. Islam, M.A. Hasan, H.M. Jawad Khan, M. Azizur R. Khan, A. Deb, Md. Al Raihan, M.W. Rahman, Adsorption of Crystal violet dye by coconut husk powder: isotherm, kinetics and thermodynamics perspectives, Environ. Nanotechnol. Monit. Manage., 17 (2022) 100651, doi: 10.1016/j.enmm.2022.100651.
  53. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye Crystal violet from wastewater by waste materials, J. Colloid Interface Sci., 343 (2010) 463–473.
  54. A. Saeed, M. Sharif, M., M. Iqbal, Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of Crystal violet adsorption, J. Hazard. Mater., 179 (2010) 564–572.
  55. T.A. Khan, R. Rahman, E.A. Khan, Decolorization of bismarck brown R and Crystal violet in liquid phase using modified pea peels: non-linear isotherm and kinetics modelling, Model. Earth Syst. Environ., 2 (2016) 1–11.
  56. Z. Liu, T.A. Khan, M.A. Islam, U. Tabrez, A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon, Bioresour. Technol., 354 (2022) 127168, doi: 10.1016/j.biortech.2022.127168.
  57. CPCB, Inventorization of Sewage Treatment Plants, Control of Urban Pollution Series: CUPS/84/2015-16 (Accessed on 18 March 2015).
  58. M. Khwairakpam, R. Bhargava, Vermitechnology for sewage sludge recycling, J. Hazard. Mater., 161 (2009) 948–954.
  59. R.K. Sinha, S. Herat, G. Bharambe, A. Brahambhatt, Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms, Waste Manage. Res., 28 (2010) 872–881.
  60. J. Wang, J. Wang, Application of radiation technology to sewage sludge processing: a review, J. Hazard. Mater., 143 (2007) 2–7.
  61. M. Jaeger, M. Mayer, The Noell Conversion Process – a gasification process for the pollutant-free disposal of sewage sludge and the recovery of energy and materials, Water Sci. Technol., 41 (2000) 37–44.
  62. A.N. Ghiocel, V.N. Panaitescu, Using sewage sludge as an alternative fuel for the cement production process, IOP Conf. Ser.: Mater. Sci. Eng., 400 (2018) 022029.
  63. I.C. Pereira, K.Q. Carvalho, F.H. Passig, R.C. Ferreira, R.C.P. Rizzo-Domingues, M.I. Hoppen, G. Macioski, A. Nagalli, F. Perretto, Thermal and thermal-acid treated sewage sludge for the removal of dye Reactive Red 120: characteristics, kinetics, isotherms, thermodynamics and response surface methodology design, J. Environ. Chem. Eng., 6 (2018) 7233–7246.
  64. C. Jindarom, V. Meeyoo, B. Kitiyanan, T. Rirksomboon, P. Rangsunvigit, Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge, Chem. Eng. J., 133 (2007) 239–246.
  65. F. Rozada, L.F. Calvo, A.I. Garcıa, J. Martın-Villacorta, M. Otero, Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems, Bioresour. Technol., 87 (2003) 221–230.
  66. Y. Tang, Q. Zhou, Y. Zeng, Y. Peng, Bio-adsorption of dyes from aqueous solution by powdered excess sludge (PES): kinetic, isotherm, and thermodynamic study, J. Dispersion Sci. Technol., 38 (2017) 347–354.
  67. A. Valério Filho, R. Xavaré Kulman, L. Vaz Tholozan, A.R. Felkl de Almeida, G. Silveira da Rosa, Preparation and characterization of activated carbon obtained from water treatment plant sludge for removal of cationic dye from wastewater, Processes, 8 (2020) 1549, doi: 10.3390/pr8121549.
  68. P. Shrivastava, M.K. Dwivedi, V. Malviya, P. Jain, Process development for the removal of Malachite green dye from wastewater using sewage sludge (STP) as an adsorbent, AIP Conf. Proc., 2369 (2021) 020218.
  69. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 1100–1107.
  70. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  71. O.J.D.L. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1024.
  72. M.M. Dubinin, The equation of the characteristic curve of activated charcoal, In Dokl. Akad. Nauk. SSSR., 55 (1947) 327–329.
  73. S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl., 24 (1898) 1–39.
  74. Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76 (1998) 822–827.
  75. T.A. Khan, S. Dahiya, E.A. Khan, Removal of direct red 81 from aqueous solution by adsorption onto magnesium oxide-coated kaolinite: isotherm, dynamics and thermodynamic studies, Environ. Prog. Sustainable Energy, 36 (2017) 45–58.
  76. M.F. Siddiqui, E.A. Khan, T. Alam Khan, Synthesis of MoO3/polypyrrole nanocomposite and its adsorptive properties toward cadmium(II) and nile blue from aqueous solution: equilibrium isotherm and kinetics modelling, Environ. Prog. Sustainable Energy, 38 (2019) e13249.
  77. Y.S. Ho, G. McKay, Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 34 (1999) 1179–1204.
  78. Y.C. Wong, Y.S. Szeto, W. Cheung, G. McKay, Adsorption of acid dyes on chitosan—equilibrium isotherm analyses, Process Biochem., 39 (2004) 695–704.
  79. A. Malek, S. Farooq, Comparison of isotherm models for hydrocarbon adsorption on activated carbon, AlChE J., 42 (1996) 3191–3201.
  80. A.R. Khan, I.R. Al-Waheab, A. Al-Haddad, A generalized equation for adsorption isotherms
    for multi-component organic pollutants in dilute aqueous solution, Environ. Technol., 17 (1996) 13–23.
  81. T.A. Khan, E.A. Khan, Removal of basic dyes from aqueous solution by adsorption onto binary
    iron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling, Appl. Clay Sci., 107 (2015) 70–77.
  82. T.A. Khan, M. Nouman, D. Dua, S.A. Khan, S.S. Alharthi, Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: isotherm, kinetics, and thermodynamic study, J. Saudi Chem. Soc., 26 (2022) 101417.
  83. Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141 (2002) 1–33.
  84. Y.S. Ho, Selection of optimum sorption isotherm, Carbon, 42 (2004) 2115–2116.
  85. O.T. Hanna, O.C. Sandall, Computational Methods in Chemical Engineering, Prentice Hall, New Jersey, 1995. Available at https://doi.org/10.21741/9781945291333-1
  86. J.C.Y. Ng, W.H. Cheung, G. McKay, Equilibrium studies of the sorption of Cu(II) ions onto chitosan, J. Colloid Interface Sci., 255 (2002) 64–74.
  87. H. Chernoff, E.L. Lehmann, The Use of Maximum Likelihood Estimates in χ2 Tests for Goodness of Fit, In Selected Works of EL Lehmann, Springer, Boston, MA, 2012, pp. 541–549,
    doi: 10.1007/978-1-4614-1412-4_47.
  88. S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimized isotherm models for basic dye adsorption by kudzu, Bioresour. Technol., 88 (2003) 143–152.
  89. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11 (1963) 431–441.
  90. S.C. Tsai, K.W. Juang, Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite, J. Radioanal. Nucl. Chem., 243 (2000) 741–746.
  91. W.A.H. Altowayti, N. Othman, A. Al-Gheethi, M. Dzahir, S.M. Asharuddin, A.F. Alshalif, I.M. Nasser, H.A. Tajarudin, F.A.H. Al-Towayti, Adsorption of Zn2+ from synthetic wastewater using dried watermelon rind (D-WMR): an overview of nonlinear and linear regression and error analysis, Molecules, 26 (2021) 6176.
  92. P. Shrivastava, V. Malviya, M.K. Dwivedi, M.K. Tiwari, Elemental investigation of sewage sludge samples using synchrotron radiation based XRF spectrometry, Dickensian J., 22 (2022) 777–785.
  93. EPA, Land Application of Sewage Sludge, Environmental Protection Agency, Part 503. Standards for the Use or Disposal of Sewage Sludge (Section 503.13), Pollutant Limits, United States Office of Enforcement, Environmental and Compliance Assurance, Protection Agency Washington, DC 20460, 1994.
  94. N. Gao, J. Li, B. Qi, A. Li, Y. Duan, Z. Wang, Thermal analysis and products distribution of dried sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis, 105 (2014) 43–48.
  95. M. Kowalski, K. Kowalska, J. Wiszniowski, J. Turek- Szytow, Qualitative analysis of activated sludge using FT-IR technique, Chem. Pap., 72 (2018) 2699–2706.
  96. A. Goksu, M.K. Tanaydin, Adsorption of hazardous Crystal violet dye by almond shells and determination of optimum process conditions by Taguchi method, Desal. Water Treat., 88 (2017) 189–199.
  97. S.C. Pan, C.C. Lin, D.H. Tseng, Reusing sewage sludge ash as adsorbent for copper removal from wastewater, Resour. Conserv. Recycl., 39 (2003) 79–90.
  98. P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  99. N. Laskar, U. Kumar, Adsorption of Crystal violet from wastewater by modified bambusa tulda, KSCE J. Civ. Eng., 22 (2018) 2755–2763.
  100. S.D. Khattri, M.K. Singh, Colour removal from synthetic dye wastewater using a bioadsorbent, Water Air Soil Pollut., 120 (2000) 283–294.
  101. S. Khattri, M. Singh, Use of Sagaun sawdust as an adsorbent for the removal of Crystal violet dye from simulated wastewater, Environ. Prog. Sustainable Energy, 31 (2012) 435–442.
  102. S.D. Khattri, M.K. Singh, Colour removal from dye wastewater using sugar cane dust as an adsorbent, Adsorpt. Sci. Technol., 17 (1999) 269–282.
  103. H. Patel, R.T. Vashi, Adsorption of Crystal violet dye onto tamarind seed powder, E-J. Chem., 7 (2010) 975–984.
  104. M.K. Satapathy, P. Das, Optimization of Crystal violet dye removal using novel soil-silver nanocomposite as nanoadsorbent using response surface methodology, J. Environ. Chem. Eng., 2 (2014) 708–714.
  105. O.S. Amodu, T.V. Ojumu, S.K. Ntwampe, O.S. Ayanda, Rapid adsorption of Crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles, J. Encapsulation Adsorpt. Sci., 5 (2015) 191–203.
  106. L.K. Akinola, A.M. Umar, Adsorption of Crystal violet onto adsorbents derived from agricultural wastes: kinetic and equilibrium studies, J. Appl. Sci. Environ. Manage., 19 (2015) 279–288.
  107. D. Mohan, K.P. Singh G. Singh, K. Kumar, Removal of dyes from wastewater using fly ash, a low-cost adsorbent, Ind. Eng. Chem. Res., 41 (2002) 3688–3695.
  108. L. Li, S. Wang, Z. Zhu, Geopolymeric adsorbents from fly ash for dye removal from aqueous solution, J. Colloid Interface Sci., 300 (2006) 52–59.
  109. X.L. Gong, H.Q. Lu, K. Li, W. Li, Effective adsorption of Crystal violet dye on sugarcane bagasse–bentonite/sodium alginate composite aerogel: Characterisation, experiments, and advanced modelling, Sep. Purif. Technol., 286 (2022) 120478, doi: 10.1016/j.seppur.2022.120478.