References

  1. Q. Wang, L.P. Liang, F.F. Xi, G.L. Tian, Q.L. Mao, X. Meng, Adsorption of Azo Dye Acid Red 73 onto rice wine lees: adsorption kinetics and isotherms, Adv. Mater. Sci. Eng., 2020 (2020) 3469579, doi: 10.1155/2020/3469579.
  2. N. Mirzaei, H.R. Ghaffari, K. Sharafi, A. Velayati, G. Hoseindoost, S. Rezaei, A.H. Mahvi, A. Azari, K. Dindarloo, Modified natural zeolite using ammonium quaternary based material for Acid red 18 removal from aqueous solution, J. Environ. Chem. Eng., 5 (2017) 3151–3160.
  3. A. Azizi, M.R. Alavi Moghaddam, R. Maknoon, E. Kowsari, Investigation of enhanced Fenton process (EFP) in color and COD removal of wastewater containing Acid Red 18 by response surface methodology: evaluation of EFP as post treatment, Desal. Water Treat., 57 (2015) 14083–14092.
  4. M. Malakootian, H. Mahdizadeh, M. Khavari, A. Nasiri, M.A. Gharaghani, M. Khatami, E. Sahle-Demessie, R.S. Varma, Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions, J. Environ. Chem. Eng., 8 (2019) 103553, doi: 10.1016/j.jece.2019.103553.
  5. S.C. Deogaonkar, P. Wakode, K.P. Rawat, Electron beam irradiation post treatment for degradation of non biodegradable contaminants in textile wastewater, Radiat. Phys. Chem., 165 (2019) 108377, doi: 10.1016/j.radphyschem.2019.108377.
  6. J.M.P. Ramos, N.M. Pereira-Queiroz, D.H.S. Santos, J.R. Nascimento, C.M. de Carvalho, J. Tonholo, C.L.P.S. Zanta, Printing ink effluent remediation: a comparison between electrochemical and Fenton treatments, J. Water Process Eng., 31 (2019) 100803, doi: 10.1016/j.jwpe.2019.100803.
  7. M. Reza, H. Mahdi, G. Amin, Using of TiO2/Ag2O nanocomposite in degradation of Acid Red 18 Dye in photoreactor by Taguchi experimental design, Russ. J. Phys. Chem. A, 93 (2019) 1133–1142.
  8. S. Zahorulko, O. Shmychkova, T. Luk’yanenko, L. Dmitrikova, A. Velichenko, The comparative study of electrocatalytic activity of various anode materials in respect to the oxidation of nitroanilines, Mater. Today Proc., 6 (2019) 242–249.
  9. C. Geng, Z.J. Liang, F.Y. Cui, Z.W. Zhao, C. Yuan, J.Y. Du, C. Wang, Energy-saving photo-degradation of three fluoroquinolone antibiotics under VUV/UV irradiation: kinetics, mechanism, and antibacterial activity reduction, Chem. Eng. J., 383 (2020) 123145, doi: 10.1016/j.cej.2019.123145.
  10. M. Baca, M. Aleksandrzak, E. Mijowska, R.J. Kaleńczuk, B. Zielińska, Core/shell structure of mesoporous carbon spheres and g-C3N4 for Acid Red 18 decolorization, Catalysts, 9 (2019) 1007, doi: 10.3390/catal9121007.
  11. B.M. Souza-Chaves, M. Dezotti, C.D. Vecitis, Synergism of ozonation and electrochemical filtration during advanced organic oxidation, J. Hazard. Mater., 382 (2020) 121085, doi: 10.1016/j.jhazmat.2019.121085.
  12. D. Zhi, J.B. Wang, Y.Y. Zhou, Z.R. Luo, Y.Q. Sun, Z.H. Wan, L. Luo, D.C.W. Tsang, D.D. Dionysiou, Development of ozonation and reactive electrochemical membrane coupled process: enhanced tetracycline mineralization and toxicity reduction, Chem. Eng. J., 383 (2020) 123149, doi: 10.1016/j.cej.2019.123149.
  13. A.M. Chávez, R.R. Solís, F.J. Beltrán, Magnetic graphene TiO2-based photocatalyst for the removal of pollutants of emerging concern in water by simulated sunlight aided photocatalytic ozonation, Appl. Catal., B, 262 (2020) 118275, doi: 10.1016/j.apcatb.2019.118275.
  14. A. Ansari, D. Nematollahi, Convergent paired electrocatalytic degradation of p-dinitrobenzene
    by Ti/SnO2-Sb/β-PbO2 anode. A new insight into the electrochemical degradation mechanism, Appl. Catal., B, 261 (2020) 118226, doi: 10.1016/j.apcatb.2019.118226.
  15. Z. Zhang, C. Teng, K. Zhou, C. Peng, W. Chen, Degradation characteristics of dissolved organic matter in nanofiltration concentrated landfill leachate during electrocatalytic oxidation, Chemosphere, 255 (2020) 127055, doi: 10.1016/j.chemosphere.2020.127055.
  16. J.X. Feng, J.X. Sun, X.S. Liu, J.Z. Zhu, S.H. Tian, R. Wu, Y. Xiong, Coupling effect of piezomaterial and DSA catalyst for degradation of metronidazole: finding of induction electrocatalysis from remnant piezoelectric filed, J. Catal., 381 (2020) 530–539.
  17. A.Q. Chen, S.J. Xia, Z.G. Ji, H.W. Lu, Insights into the origin of super-high oxygen evolution potential of Cu doped SnO2 anodes: a theoretical study, Appl. Surf. Sci., 471 (2019) 149–153.
  18. A.Q. Chen, S.V. Nair, B. Miljkovic, H.E. Ruda, Z.G. Ji, A DFT computational study of the mechanism of super-high oxygen evolution potential of W doped SnO2 anodes, Electroanal. Chem., 855 (2019) 113499, doi: 10.1016/j.jelechem.2019.113499.
  19. G. de O S Santos, V.M. Vasconcelos, R.S. da Silva, M.A. Rodrigo, K.I.B. Eguiluz, G.R. Salazar-Banda, New laserbased method for the synthesis of stable and active Ti/SnO2–Sb anodes, Electrochim. Acta, 332 (2020) 135478, doi: 10.1016/j.electacta.2019.135478.
  20. G.S. Szymański, M. Wiśniewski, P. Olejnik, S. Koter, E. Castro, L. Echegoyen, A.P. Terzyk,
    M.E. Plonska-Brzezinska, Correlation between the catalytic and electrocatalytic properties of nitrogen-doped carbon nanoonions and the polarity of the carbon surface: experimental and theoretical investigations, Carbon, 151 (2019) 120–129.
  21. T.G. Duan, L. Ma, Y. Chen, X. Ma, J. Hou, C.G. Lin, M.X. Sun, Morphology-dependent activities
    of TiO2-NTs@Sb-SnO2 electrodes for efficient electrocatalytic methyl orange decolorization, J. Solid State Electrochem., 22 (2018) 1871–1879.
  22. F.P. Hu, X.W. Cui, W.X. Chen, Pulse electro-codeposition of Ti/SnO2–Sb2O4–CNT electrode for phenol oxidation, Electrochem. Solid-State Lett., 13 (2010), doi: 10.1149/1.3457858.
  23. H. Pourzamani, Y. Hajizadeh, N. Mengelizadeh, Application of three-dimensional electro-Fenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac, Process Saf. Environ. Prot., 119 (2018) 271–284.
  24. L. Mais, M. Mascia, S. Palmas, A. Vacca, Photoelectrochemical oxidation of phenol with nanostructured
    TiO2-PANI electrodes under solar light irradiation, Sep. Purif. Technol., 208 (2019) 153–159.
  25. F. Xu, L. Chang, X. Duan, W. Bai, X. Sui, X. Zhao, A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis, Electrochim. Acta, 300 (2019) 53–66.
  26. L. Gan, Y. Wu, H. Song, C. Lu, S. Zhang, A. Li, Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols, Chemosphere, 226 (2019) 329–339.
  27. A. Anagnostopoulos, A. Palacios, M.H. Navarro, S. Fereres, Y.L. Ding, Effect of SiO2 nanoparticle addition on the wetting and rheological properties of solar salt, Sol. Energy Mater. Sol. Cells, 210 (2020) 110483.
  28. S.R. Karnati, P. Agbo, L.F. Zhang, Applications of silica nanoparticles in glass/carbon fiber-reinforced epoxy nanocomposite, Compos. Commun., 17 (2020) 32–41.
  29. T.T. Ren, G.W. Tang, B. Yuan, Y. Yang, Z.S. Yan, L.R. Ma, X. Huang, Hexadecyltrimethoxysilane-modified SiO2 nanoparticle-coated halloysite nanotubes embedded in silicone-acrylic polymer films as durable fluorine-free superhydrophobic coatings, ACS Appl. Nano Mater., 3 (2020) 5807–5815.
  30. Y. Song, J. Liu, F. Ge, X. Huang, Y. Zhang, H. Ge, X. Meng, Y. Zhao, Influence of Nd-doping on the degradation performance of Ti/Sb-SnO2 electrode, J. Environ. Chem. Eng., 9 (2021) 105409, doi: 10.1016/j.jece.2021.105409.
  31. Q. Bi, W. Guan, Y. Gao, Y. Cui, S. Ma, J. Xue, Study of the mechanisms underlying the effects of composite intermediate layers on the performance of Ti/SnO2-Sb-La electrodes, Electrochim. Acta, 306 (2019) 667–679.
  32. Y. Zhang, P. He, L. Jia, C. Li, H. Liu, S. Wang, S. Zhou, F. Dong, Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R, J. Colloid Interface Sci., 533 (2019) 750–761.
  33. L. Zhang, L. Xu, J. He, J. Zhang, Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration, Electrochim. Acta, 117 (2014) 192–201.
  34. Y. Sun, S. Cheng, Z. Mao, Z. Lin, X. Ren, Z. Yu, High electrochemical activity of a Ti/SnO2–Sb electrode electrodeposited using deep eutectic solvent, Chemosphere, 239 (2020) 124715, doi: 10.1016/j.chemosphere.2019.124715.
  35. W.Y. Wang, X.Y. Duan, X.Y. Sui, Q. Wang, F. Xu, L.M. Chang, Surface characterization and electrochemical properties of PbO2/SnO2 composite anodes for electrocatalytic oxidation of m-nitrophenol, Electrochim. Acta, 335 (2020) 135649, doi: 10.1016/j.electacta.2020.135649.
  36. E.C.P.E. Rodrigues, P. Olivi, Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors, J. Phys. Chem. Solids, 64 (2003) 1105–1112.
  37. L. Xu, Y. Yi, G.R. Liang, W. Zhang, Antimony doped tin oxide nanoparticles deposited onto Nb−TiO2 nanotubes for electrochemical degradation of bio-refractory pollutions, Electroanalysis: An Int. J. Devoted Electroanal. Sens. Bioelectronic Devices, 32 (2020) 1370–1378.
  38. Y. Wang, H.Y. Duan, Z.H. Pei, L. Xu, Hydrothermal synthesis of 3D hierarchically flower-like structure
    Ti/SnO2-Sb electrode with long service life and high electrocatalytic performance, Electroanal. Chem., 855 (2019) 113635, doi: 10.1016/j.jelechem.2019.113635.
  39. T. Duan, Y. Chen, Q. Wen, Y. Duan, Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb–SnO2 electrodes fabricated by one-step pulse electro-codeposition, RSC Adv., 5 (2015) 19601–19612.
  40. C.B. Tang, Y.X. Lu, F. Wang, H. Niu, L.H. Yu, J.Q. Xue, Influence of a MnO2-WC interlayer on the stability and electrocatalytic activity of titanium-based PbO2 anodes, Electrochim. Acta, 331 (2020) 135381, doi: 10.1016/j.electacta.2019.135381.
  41. B. Zhao, H.B. Yu, Y. Lu, J. Qu, S.Y. Zhu, M.X. Huo, Polyethylene glycol assisted synthesis of a praseodymium-doped PbO2 electrode and its enhanced electrocatalytic oxidation performance, J. Taiwan Inst. Chem. Eng., 100 (2019) 144–150.
  42. Y. Yao, G. Teng, Y. Yang, C. Huang, B. Liu, L. Guo, Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: electrode characterization, influencing factors and degradation pathways, Sep. Purif. Technol., 211 (2019) 456–466.
  43. S.S. Yang, W.Q. Guo, Y.D. Chen, Q.L. Wu, H.C. Luo, S.M. Peng, H.S. Zheng, X.C. Feng, X. Zhou, N.Q. Ren, Economical evaluation of sludge reduction and characterization of effluent organic matter in an alternating aeration activated sludge system combining ozone/ultrasound pretreatment, Bioresour. Technol., 177 (2015) 194–203.
  44. T.-M. Hwang, S.-H. Nam, J. Lee, J.-W. Koo, E. Kim, M. Kwon, Hydroxyl radical scavenging factor measurement using a fluorescence excitation-emission matrix and parallel factor analysis in ultraviolet advanced oxidation processes, Chemosphere, 259 (2020) 127396, doi: 10.1016/j.chemosphere.2020.127396.
  45. D. Lim, Y. Kim, D. Nam, S. Hwang, S.E. Shim, S.-H. Baeck, Influence of the Sb content in Ti/SnO2-Sb electrodes on the electrocatalytic behaviour for the degradation of organic matter, J. Cleaner Prod., 197 (2018) 1268–1274.
  46. Y. Zhang, P. He, L. Jia, T. Zhang, H. Liu, S. Wang, C. Li, F. Dong, S. Zhou, Dimensionally stable Ti/SnO2-RuO2 composite electrode based highly efficient electrocatalytic degradation of industrial gallic acid effluent, Chemosphere, 224 (2019) 707–715.