References
- K. Thangavelu, R. Annamalai, D. Arulnandhi, Preparation
and characterization of nanosized TiO2 powder by sol–gel
precipitation route, Int. J. Emerg. Technol. Adv. Eng., 3 (2013)
636–639.
- D. Siamak, F. Moslem, N. Mohammad, Solid state dispersion
and hydrothermal synthesis, characterization and evaluations
of TiO2/ZnO nanostructures for degradation of Rhodamine B,
Desal. Water Treat., 231 (2021) 425–435.
- M.H. Farzana, S. Meenakshi, Synergistic effect of chitosan
and titanium dioxide on the removal of toxic dyes by the
photodegradation technique, Ind. Eng. Chem. Res., 53 (2014)
55–63.
- S.H. Othman, T.I.M. Ghazi, S.A. Rashid, N. Abdullah, Dispersion
and stabilization of photocatalytic TiO2 nanoparticles in
aqueous suspension for coatings applications, J. Nanomater.,
2012 (2012) 718214, doi: 10.1155/2012/718214.
- S. Bagheri, N. Muhd Julkapli, S.B. Abd Hamid, Titanium
dioxide as a catalyst support in heterogeneous catalysis,
Sci. World J., 2014 (2014) 727496, doi: 10.1155/2014/727496.
- S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles,
Chin. Sci. Bull., 56 (2011) 1639–1657.
- Y. Haldorai, Chitosan/titanium oxide composite: a photocatalyst
and bacteriocide, SPE, (2013).
- A.P. Hossein, F. Moslem, K.-N. Mohammadreza, Synthesis
and characterization of ternary chitosan–TiO2–ZnO over
graphene for photocatalytic degradation of tetracycline
from pharmaceutical wastewater, Sci. Rep., 11 (2021) 24177,
doi: 10.1038/s41598-021-03492-5.
- A. Nithya, K. Jothivenkatachalam, Visible light assisted TiO2-chitosan composite for removal of reactive dye, J. Environ.
Nanotechnol., 3 (2014) 20–26.
- I. Fajriati, M. Mudasir, E.T. Wahyuni, Photocatalytic
decolorization study of Methyl orange by TiO2-chitosan
nanocomposites, Indonesian J. Chem., 14 (2014) 209–218.
- S. Afzal, E.M. Samsudin, N.M. Julkapli, S.B.A. Hamid, Controlled
acid catalyzed sol–gel for the synthesis of highly active TiO2-chitosan nanocomposite and its corresponding photocatalytic
activity, Environ. Sci. Pollut. Res., 23 (2016) 23158–23168.
- S. Afzal, E.M. Samsudin, L.K. Mun, N.M. Julkapli, S.B.A. Hamid,
Room temperature synthesis of TiO2 supported chitosan
photocatalyst: study on physicochemical and adsorption photodecolorization
properties, Mater. Res. Bull., 86 (2017) 24–29.
- M. Hema, A. Yelil Arasi, P. Tamilselvi, R. Anbarasan, Titania
nanoparticles synthesized by sol–gel technique, Chem. Sci.
Trans., 2 (2013) 239–245.
- C.S. Lim, J.H. Ryu, D.-H. Kim, S.-Y. Cho, W.C. Oh, Reaction
morphology and the effect of pH on the preparation of TiO2
nanoparticles by a sol–gel method, J. Ceram. Process. Res.,
11 (2010) 736–741.
- D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Effects
of particle size on the structure and photocatalytic performance
by alkali-treated TiO2, Nanomaterials (Basel, Switzerland),
10 (2020) 546, doi: 10.3390/nano10030546.
- E.M. Simonsen, E.G. Søgaard, Sol–gel reactions of titanium
alkoxides and water: influence of pH and alkoxy group on
cluster formation and properties of the resulting products,
J. Sol-Gel Sci. Technol., 53 (2010) 485–497.
- H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra
of TiO2 nanoparticles, Vib. Spectrosc., 37 (2004) 33–38.
- D.A. Gómez, J. Coello, S. Maspoch, The influence of particle
size on the intensity and reproducibility of Raman spectra of
compacted samples, Vib. Spectrosc., 100 (2019) 48–56.
- M. Safari, M. Ghiaci, M. Jafari-Asl, A.A. Ensafi, Nanohybrid
organic–inorganic chitosan/dopamine/TiO2 composites with
controlled drug-delivery properties, Appl. Surf. Sci., 342 (2015)
26–33.
- E.M. Samsudin, S.B. Abd Hamid, J.C. Juan, W.J. Basirun,
A.E. Kandjani, S. Bhargava, Controlled nitrogen insertion in
titanium dioxide for optimal photocatalytic degradation of
atrazine, RSC Adv., 5 (2015) 44041–44052.
- R.V. da Silva Amorim, W. de Souza, K. Fukushima, G.M. de
Campos-Takaki, Faster chitosan production by mucoralean
strains in submerged culture, Braz. J. Microbiol., 32 (2001)
20–23.
- R. Jiang, H.Y. Zhu, H.H. Chen, J. Yao, Y.-Q. Fu, Z.Y. Zhang,
Y.M. Xu, Effect of calcinations temperature on physical
parameters and photocatalytic activity of mesoporous titania
spheres using chitosan/poly(vinyl alcohol) hydrogel beads
as a template, Appl. Surf. Sci., 319 (2014) 189–196.
- Z. Jin, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, Indium doped
and carbon modified P25 nanocomposites with high visiblelight
sensitivity for the photocatalytic degradation of organic
dyes, Appl. Catal., A, 517 (2016) 129–140.
- E.M. Samsudin, S.B.A. Hamid, J.C. Juan, W.J. Basirun, Influence
of triblock copolymer (pluronic F127) on enhancing the
physico-chemical properties and photocatalytic response of
mesoporous TiO2, Appl. Surf. Sci., 355 (2015) 959–968.
- M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao,
Tuning the relative concentration ratio of bulk defects to
surface defects in TiO2 nanocrystals leads to high photocatalytic
efficiency, J. Am. Chem. Soc., 133 (2011) 16414–16417.
- R. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic
degradation of Methyl orange by nanostructured TiO2/ZnO
heterojunctions, J. Mater. Chem. A, 3 (2015) 6565–6574.
- A.H. Jawad, M.A. Nawi, Oxidation of crosslinked chitosanepichlorohydrine
film and its application with TiO2 for phenol
removal, Carbohydr. Polym., 90 (2012) 87–94.
- S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles,
Chin. Sci. Bull., 56 (2011) 1639–1657.