References

  1. K. Thangavelu, R. Annamalai, D. Arulnandhi, Preparation and characterization of nanosized TiO2 powder by sol–gel precipitation route, Int. J. Emerg. Technol. Adv. Eng., 3 (2013) 636–639.
  2. D. Siamak, F. Moslem, N. Mohammad, Solid state dispersion and hydrothermal synthesis, characterization and evaluations of TiO2/ZnO nanostructures for degradation of Rhodamine B, Desal. Water Treat., 231 (2021) 425–435.
  3. M.H. Farzana, S. Meenakshi, Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique, Ind. Eng. Chem. Res., 53 (2014) 55–63.
  4. S.H. Othman, T.I.M. Ghazi, S.A. Rashid, N. Abdullah, Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications, J. Nanomater., 2012 (2012) 718214, doi: 10.1155/2012/718214.
  5. S. Bagheri, N. Muhd Julkapli, S.B. Abd Hamid, Titanium dioxide as a catalyst support in heterogeneous catalysis, Sci. World J., 2014 (2014) 727496, doi: 10.1155/2014/727496.
  6. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chin. Sci. Bull., 56 (2011) 1639–1657.
  7. Y. Haldorai, Chitosan/titanium oxide composite: a photocatalyst and bacteriocide, SPE, (2013).
  8. A.P. Hossein, F. Moslem, K.-N. Mohammadreza, Synthesis and characterization of ternary chitosan–TiO2–ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater, Sci. Rep., 11 (2021) 24177, doi: 10.1038/s41598-021-03492-5.
  9. A. Nithya, K. Jothivenkatachalam, Visible light assisted TiO2-chitosan composite for removal of reactive dye, J. Environ. Nanotechnol., 3 (2014) 20–26.
  10. I. Fajriati, M. Mudasir, E.T. Wahyuni, Photocatalytic decolorization study of Methyl orange by TiO2-chitosan nanocomposites, Indonesian J. Chem., 14 (2014) 209–218.
  11. S. Afzal, E.M. Samsudin, N.M. Julkapli, S.B.A. Hamid, Controlled acid catalyzed sol–gel for the synthesis of highly active TiO2-chitosan nanocomposite and its corresponding photocatalytic activity, Environ. Sci. Pollut. Res., 23 (2016) 23158–23168.
  12. S. Afzal, E.M. Samsudin, L.K. Mun, N.M. Julkapli, S.B.A. Hamid, Room temperature synthesis of TiO2 supported chitosan photocatalyst: study on physicochemical and adsorption photodecolorization properties, Mater. Res. Bull., 86 (2017) 24–29.
  13. M. Hema, A. Yelil Arasi, P. Tamilselvi, R. Anbarasan, Titania nanoparticles synthesized by sol–gel technique, Chem. Sci. Trans., 2 (2013) 239–245.
  14. C.S. Lim, J.H. Ryu, D.-H. Kim, S.-Y. Cho, W.C. Oh, Reaction morphology and the effect of pH on the preparation of TiO2 nanoparticles by a sol–gel method, J. Ceram. Process. Res., 11 (2010) 736–741.
  15. D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2, Nanomaterials (Basel, Switzerland), 10 (2020) 546, doi: 10.3390/nano10030546.
  16. E.M. Simonsen, E.G. Søgaard, Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products, J. Sol-Gel Sci. Technol., 53 (2010) 485–497.
  17. H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra of TiO2 nanoparticles, Vib. Spectrosc., 37 (2004) 33–38.
  18. D.A. Gómez, J. Coello, S. Maspoch, The influence of particle size on the intensity and reproducibility of Raman spectra of compacted samples, Vib. Spectrosc., 100 (2019) 48–56.
  19. M. Safari, M. Ghiaci, M. Jafari-Asl, A.A. Ensafi, Nanohybrid organic–inorganic chitosan/dopamine/TiO2 composites with controlled drug-delivery properties, Appl. Surf. Sci., 342 (2015) 26–33.
  20. E.M. Samsudin, S.B. Abd Hamid, J.C. Juan, W.J. Basirun, A.E. Kandjani, S. Bhargava, Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine, RSC Adv., 5 (2015) 44041–44052.
  21. R.V. da Silva Amorim, W. de Souza, K. Fukushima, G.M. de Campos-Takaki, Faster chitosan production by mucoralean strains in submerged culture, Braz. J. Microbiol., 32 (2001) 20–23.
  22. R. Jiang, H.Y. Zhu, H.H. Chen, J. Yao, Y.-Q. Fu, Z.Y. Zhang, Y.M. Xu, Effect of calcinations temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template, Appl. Surf. Sci., 319 (2014) 189–196.
  23. Z. Jin, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, Indium doped and carbon modified P25 nanocomposites with high visiblelight sensitivity for the photocatalytic degradation of organic dyes, Appl. Catal., A, 517 (2016) 129–140.
  24. E.M. Samsudin, S.B.A. Hamid, J.C. Juan, W.J. Basirun, Influence of triblock copolymer (pluronic F127) on enhancing the physico-chemical properties and photocatalytic response of mesoporous TiO2, Appl. Surf. Sci., 355 (2015) 959–968.
  25. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency, J. Am. Chem. Soc., 133 (2011) 16414–16417.
  26. R. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic degradation of Methyl orange by nanostructured TiO2/ZnO heterojunctions, J. Mater. Chem. A, 3 (2015) 6565–6574.
  27. A.H. Jawad, M.A. Nawi, Oxidation of crosslinked chitosanepichlorohydrine film and its application with TiO2 for phenol removal, Carbohydr. Polym., 90 (2012) 87–94.
  28. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chin. Sci. Bull., 56 (2011) 1639–1657.